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Abstract: The Building Block Basis (BBB) has recently been
shown to be extremely useful in characterising the dynamics of
genetic algorithms operating on fixed-length strings. In this pa-
per we show that there is a natural generalisation of the BBB
for variable-length strings and program trees.

I. Introduction

An Evolutionary Algorithm (EA) can be viewed as a dynam-
ical system wherein one wishes to solve for the population
stateat timet given the population state at some initial time,
say t = 0. The population state is often stated in terms of
a frequency vector,P(t), whose componentsPI(t), give the
proportion of the population in stateI at time t. Formally,
one specifies a fitness landscape,{fI}, a set of genetic oper-
ators,{Oα}, and an initial population,P(0); then, there ex-
ists an evolution operator,H(t) ≡ H(t, {fI}, {Oα},P(0)),
such thatP(t) = H(t, {fI}, {Oα},P(0)).
The states of the system are elements of a space - theconfigu-
ration space, C - which may be finite or infinite dimensional.
The nature of this space depends on how one parametrises
the states of the system. For instance, for the familiar case of
fixed-length binary strings of length̀, the states of a string
may be placed in a one-to-one correspondence with the ver-
tices of an`-dimensional hypercube,̀-dimensional in the
sense that it may be embedded inR`. C in this case is the set
of vertices of the hypercube, which has dimension|C| = 2`

and which coincides with thesearch spaceΩ. If, however,
the population includes more than one string, as is usual, the

state spaceC for an EA is the space of all possible popula-
tions (note that in this more general case the notion of search
and configuration space do not necessarily coincide). Forn
strings,C naturally has dimension|C| = 2n`. This repre-
sentation, however, is somewhat over-specified. A more use-
ful representation in Evolutionary Computation (EC) is that
based on population vectors, which indicate, for each point
in the search space, how many, or what proportion of, indi-
viduals sample that point. The population vector is a vector
in C with 2` components,(P1, P2, . . . , P2`). Thus, repre-
senting the state of the system via a frequency vector, in the
dynamical systems point of view, one is interested in the time
evolution ofP(t) in C. If it was necessary to identify indi-
vidual strings - even if they were of the same genotype - then
the frequency vector representation would not be adequate
and appeal would be made to a representation that specifies
the state of every individual in the population.
Now, C, as a vector space or a simplex, will admit sets of ba-
sis vectors with respect to which the components of a vector,
such asP, may be defined. Linear transformations between
one basis set and another may then also be defined. Such ba-
sis transformations are of particular relevance in dynamical
systems, as it may well be that in a specific basis the dynam-
ics looks particularly simple. This occurs very commonly in
mechanical systems. A simple example of this would be a
particle constrained to move on a sphere embedded inR3. In
this case spherical polar coordinates(r, θ, φ) are much more
natural than Cartesian coordinates(x, y, z), as the constraint
that the particle moves on the sphere -r = constant - is
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much more naturally written in this coordinate system. An-
other simple mechanical example is that of a set of coupled
harmonic oscillators, where the coordinates of the positions
of the oscillators are coupled between neighbours and hence
the dynamics looks complicated. Passing to a description in
terms of the eigenmodes of the system however, gives a set of
equations wherein the new coordinates onC are uncoupled,
and therefore simple. Such simplifications are important in
that, when they are found, they inevitably illuminate what are
the appropriate effective degrees of freedom of the dynamical
system, thereby aiding in both the qualitative understanding,
as well as the quantitative analysis, of the system.
Simplifications of the dynamics in an appropriate basis are
not the exclusive reserve of physical, mechanical systems,
but also occur in the dynamics of EAs. For instance, it
is well known that the dynamics of mutation for binary
fixed-length strings looks simpler in the Walsh basis, as in
that basis the mutation operator is diagonal (“simple”), the
appropriate effective degrees of freedom being the Walsh
modes [4, 3, 22, 23]. This simplification also occurs for
higher cardinality alphabets, and is equivalent to a Fourier
analysis of the system. Similarly, selection looks “simple” -
diagonal and time independent - in the string basis.
The most complicated operator is recombination. Neverthe-
less, also in this case, for fixed-length strings, there exists a
preferred basis within which crossover looks simplest - the
Building Block basis (BBB) [16, 2]. The BBB is dual to
the Taylor basis, as studied in [24], and has already been
found useful in concrete calculations [6], as well as being
interestingly related to geometric quantities in the theory of
information [21]. In this basis the natural effective degrees
of freedom are schemata, the Building Blocks of a particu-
lar string. For a given crossover mask there is a unique pair
of conjugate Building Blocks that join together to form the
string. For example, for̀ = 3: to construct a string111
with a crossover maskm = 001, wheremi = 0 signifies
take theith bit of the offspring from theith bit of the first
parent, whilemi = 1 signifies take the bit from the second
parent, there is one and only one Building Block combina-
tion that builds111 with this mask -11* and its conjugate
** 1. Furthermore, the linear coordinate transformation that
allows one to pass to the BBB can be simply generated for
arbitrary` by taking the`-fold tensor product of the trans-
formation for ` = 1. In fact, the whole machinery of re-
combination can be simply built up from thè= 1 case
[2, 1]. The resulting form of the dynamical equations for
a fixed-length GA with mutation, selection and homologous
recombination is then seen to be identical to that found previ-
ously by coarse graining methods that have given rise to so-
called “exact schema theorems” [14, 20, 15, 13, 19, 12, 18].
These, in their turn, have allowed for a reconciliation of pre-
viously, seemingly antagonistic formulations of the dynam-
ics of GAs. Such coarse grained formulations have further
been extended to variable-length linear representations and
tree representations [7, 9, 8, 5, 10, 11, 17], thus leading to a

unification of the theory underlying GAs and GP.
Given that coarse grained formulations have led to a great
number of advances in the theory of GAs and GP, and that in
the case of fixed-length strings a natural coarse graining can
be implemented via a coordinate transformation, it is natu-
ral to ask if such basis transformations also exist in the more
complicated cases of variable-length strings and trees. In par-
ticular: do there exist analogs of the BBB for variable-length
strings and trees? The answer to this question is yes and
forms the subject of this paper.
In section II we discuss briefly the spaces we will consider,
i.e., the search space and the space of configurations of the
objects under discussion, be they fixed- or variable-length
strings or trees. In section III we formalise these notions,
and note the recursive and tensorial nature of these spaces,
showing how the search spaces for strings or trees of up to
a certain size can be generated from the search spaces for
simpler objects. This is quite transparent in the linear case
where the search space for length` strings can be built up as
an `-fold tensor product of the search space for length-one
strings. As the search space for variable-length strings can
be built up as a tensor sum of the search spaces for fixed-
length strings of different sizes, the extension to this case
is almost immediate. Trees, naturally, are somewhat more
subtle. In this case, we exhibit a natural recursion relation
built up in terms of tensor products and sums that relates the
search space for programs of up to depth-d to that of pro-
grams of up to depth-(d− 1). Of course, as linear structures
can be generated from the more general tree representation,
this recursion relation also applies to strings and yields the
already established relations for the linear case.
Next, in sections IV and V, we come to the crux of the matter:
an analysis of some natural coordinate bases on the search
spaces for strings and programs. We first consider the nat-
ural basis associated with the evolving objects themselves -
strings and trees. In particular, we study a basis - theδ-basis
- whose elements are characteristic functions that take value
one on one search point and zero elsewhere. Any univariate
function on the search space can naturally be written in terms
of this basis. We then show that, due to the recursive struc-
ture of the search space itself, theδ-basis can be recursively
constructed from theδ-basis for single bits or primitives of
a given arity. Having established theδ-basis, by exploiting
the recursive structure of the search space, we then go on to
consider the BBB. Having eased the reader into the notation
and concepts by starting with the case of fixed-length strings,
here we dive straight into the general case of program trees.
As there is a great deal of freedom as to which BBB one
works with, we restrict attention here to a particular manifes-
tation of the BBB wherein one arbitrary symbol or primitive
is turned into a “don’t care” symbol. We show that the co-
ordinate transformation between theδ- and Building Block
bases is effected by a transformation matrix that, due to the
recursive structure of the search space, can once again be
constructed from the transformation matrices that transform
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single bits or primitives of a given arity. Finally, in section
VI we draw some conclusions.

II. Search Space and Configuration Space

We will begin by considering the different search spaces of
interest associated with fixed-length strings, variable-length
strings and program trees respectively. Although trees are
the most general representation, fixed- and variable-length
strings being particular cases where the depth and/or arity
of the trees is restricted, they are substantially more com-
plicated than the simpler linear case. Hence, we will begin
with the latter. However, we will not dwell on the case of
fixed-length strings, as they have been extensively treated
elsewhere but, rather, use them for illustration, as they are
the least complicated and most easily understandable exam-
ple.
Consider the case of fixed-length strings of length`, where
the ith locus is associated with an alphabet of cardinality
Ai. The search space, which we denote withΩf

` , where the
superscriptf emphasises the fixed-length nature of its ele-
ments, has dimension|Ωf

` | =
∏`

i=1Ai. For example, for
the standard fixed binary alphabet,|Ωf

` | = 2`. The configu-
ration space forn fixed-length strings is thenC = (Ωf

` )⊗n,
which represents then-fold tensor product ofΩf

` . As stated
in the introduction, given that a representation in terms of
frequency vectors is most useful and of interest in EC, we
will concentrate on the states of the system as specified by
the frequencies.
There are many different mathematical structures one may
associate withΩf

` . For instance, the space of real univariate
functions overΩf

` , FΩf
`
, is a real vector space, where a vec-

tor, v, onFΩf
`

has|Ωf
` | components. Of particular interest

in this paper are the different coordinate bases that span this
vector space. Note that a vector on this space is an invari-
ant object, i.e., it is basis independent. What do change, of
course, are the components of the vector when one passes
from one coordinate basis to another. An important example
of a function/vector on the search space is the objective or
fitness functionf : Ωf

` → R+, which associates points in
the search space to non-negative fitness values. Thus, for
` = 2 andA = 2, Ωf

2 has 4 elements,{00, 01, 10, 11},
and the fitness function can be written as a row vector,
(f00, f01, f10, f11). Another natural class of candidates that
are of importance in EAs, is that of probability distributions
defined overΩf

` , such as the selection probability, the proba-
bility of generating offspring of a given genotype from a par-
ticular genetic operator, etc.1 These probability distributions
are simply functions of the formf : Ωf

` → [0, 1].
Probably the most important function for population based

1Strictly speaking probabilities do not form a vector space due to the
constraint that they must sum to one. In this case, they form asimplex;
a simplex in ann-dimensional vector space being the convex hull of any
n + 1 points that do not lie in any hyperplane of dimension< n.

algorithms, like GAs and GP, is the composition of the pop-
ulation, which is a function,φ : Ωf

` → [0, 1], that assigns a
number (a proportion) to an element ofΩf

` . In the language
of vectors this can be represented elegantly by anincidence,
frequency or population, vector,P = (φ1, φ2, . . . , φ|Ωf

` |
).

The elements of an incidence vector contain integers which
indicate how many individuals of each type are currently
present in the population, while the frequency vector nor-
malises these numbers by the population size. In an ordinary
EA, this vector represents the state of the system, and so, the
configuration spaceC is the space of all such vectors, i.e., the
simplex.
Note that in the above we have indexed the components of the
vectors using the integers, with as many integers as there are
points inΩf

` . This is not strictly necessary. An incidence vec-
tor, for example, can be indexed by the elements of the search
space themselves. However, in this case, when writing down
a vector (for example, for the purpose of doing some linear
algebra operation) one needs to decide in which order to list
the coordinates. This requires defining a total order on the el-
ements of the search space, or, alternatively, defining a map-
ping between search space elements and integers (and then
using the standard integer indexing for vectors). In the case
of fixed-length binary strings, a natural order is the “odome-
ter” ordering (0 · · · 00 < 0 · · · 01 < 0 · · · 10 < 0 · · · 11 <
· · · < 1 · · · 11) and an equivalent natural mapping is the stan-
dard binary to decimal conversion (0 · · · 00 ↔ 0, 0 · · · 01 ↔
1, 0 · · · 10 ↔ 2, 0 · · · 11 ↔ 3, · · · ), and, indeed, these have
been used widely in the theory of GAs. However, for more
complex spaces there may not be an obvious natural order,
and so, if one wants to use vectors to represent information
about the problem, algorithm or search space, one needs to
explicitly define an order. Of course, results - theoretical or
experimental - cannot depend on this arbitrary labelling.
If an incidence vector is indexed by the elements of the
search space itself, one can interpret it as a function of
the form f : Ωf

` → N (or f : Ωf
` → Z, depend-

ing on the state representation chosen) plus a total order
over Ωf

` or, equivalently, a bijective indexing functiong :
Ωf

` → {1, 2, · · · , |Ωf
` |}. By the composition,f(g−1(x)) :

{1, 2, · · · , |Ωf
` |} → R one then obtains an ordinary vector.

If one defines an indexing functiong over the search space,
then all of the functions mentioned in this section – fit-
ness functions, selection probabilities for the elements of the
search space, etc. – can conveniently be represented using
ordinary vectors onR|Ωf

` |.
As well as univariate functions, which naturally translate into
vectors onΩf

` , we can also introduce multivariate functions.
A natural bivariate function, for instance, is the mutation
probability from one string to another. Just as univariate
functions map naturally into vectors, so bivariate functions
naturally map into matrices.2

2More naturally they map into(1, 1) tensors. Similarly, recombination
is naturally written in terms of a tri-variate function - the probability that two
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Finally, we sometimes need to talk about subsets of elements
of the search space, and whether or not a point belongs to a
set.Schemataare special types of subsets of the search space,
which are typically represented using patterns of symbols
(e.g. 10** 1, which represents all strings of length 5 starting
with 10 and ending with 1, or +

��HH
* *

which represents

all programs where any two terminal symbols are added to-
gether). In the case of strings/trees or schemata, another in-
teresting function onΩf

` is thecharacteristicor membership
function -g : Ωf

` → {0, 1}, which returns 1 when applied to
an element that belongs to the set of interest, and 0 otherwise.
Turning now to the case of variable-length strings, we denote
the search spaceΩv

`max
, where`max is the maximum string

length considered3 andv refers to the variable length of the
elements in the search space. In this case, the dimension of
Ωv

`max
is |Ωv

`max
| =

∑`max

`=1

∏`
i=1A`i, whereA`i is the cardi-

nality of the alphabet associated with theith locus of strings
of length`. For a fixed alphabet of cardinalityA, this sim-
plifies to |Ωv

`max
| = A(A`max − 1)/(A− 1). Just as for fixed-

length strings one may naturally introduce multivariate func-
tions, vectors, schemata etc. As for fixed-length strings, if,
for a population of variable-length strings of sizen, one is
interested in the individual state of every string identified,
as distinct from any other, i.e. not just identified by geno-
type, then the natural configuration spaceC is of dimension∣∣∣(Ωv

`max

)⊗n
∣∣∣. If we are satisfied with the frequency or in-

cidence vector representation then we have a much smaller
configuration space.
Finally, for trees, we denote the search space byΩt

d, whered
refers to the maximum tree depth.|Ωt

d| is then the number of
programs of depth up tod, which we denotend. This number
is not as simple as in the linear case but, as we will see in the
next section, satisfies the recursion relation

n0 = |P0| nd =
amax∑
a=0

|Pa| × (nd−1)a (1)

where|Pa| is the number of primitives of aritya, amax being
the maximum arity. As with the linear case one can define
the space of univariate functions overΩt

d, FΩt
d
, in order to

define, for example, the fitness function for programs. In the
same way, one may generally define vectors, including the
incidence and frequency vectors, more general multivariate
functions and schemata. Additionally, if we wish to distin-
guish program trees above and beyond their genotypic rep-
resentation then, for a population ofn programs, the natural
configuration space isC = (Ωt

d)
⊗n. Once again though, nor-

mally we will be happy with the much smaller space of fre-
quency/population vectors. As mentioned, linear strings are
just a special case of trees, where the maximum arity is 1 and

parentsJ andK give rise to an offspringI - that maps into a(2, 1) tensor.
See [2] for a discussion of this.

3One can, of course, consider the limit`max→∞

the relation betweend and`max isd+1 = `max. Equation (1)
reduces to|Ωv

` | for variable-length strings in this case, while
the value for fixed-length strings can be found by considering
(nd − nd−1).

III. The Recursive Structure of the Search
Space

In the previous section, we defined abstractly the search
spaces for fixed-length strings, variable-length strings and
trees, showing how one could naturally associate uni- and
multivariate functions (equivalent to vectors and tensors),
schemata etc., with the space. In this section, we wish to
show that the search spaces themselves all have natural re-
cursive structures, where the space is built up from simpler,
lower-dimensional objects. As will be shown later, this recur-
sive structure greatly simplifies the analysis of these spaces
and manifests itself in the appearance of tensor products and
sums.
To illustrate this recursive structure, we first consider the
case of fixed-length strings. In this case,Ωf

` has a natural
recursive structure based on the concept of the direct (ten-
sor) product, whereinΩf

` can be generated fromΩf
1 (i), the

search space associated with theith bit, which is of dimen-
sion|Ωf

1 (i)| = Ai. Thus,

Ωf
` = Ωf

1 (1)⊗ Ωf
1 (2)⊗ . . .⊗ Ωf

1 (`)

≡
⊗̀
i=1

Ωf
1 (i) (2)

|Ωf
` | =

∏̀
i=1

|Ωf
1 (i)|

where⊗ and
⊗

represent a tensor product of the spaces.
In the simpler case of a fixed cardinality alphabet, we can
write Ωf

` = (Ωf
1 )⊗`, where⊗` as a superscript represents

the`-fold tensor product, in this case, ofΩf
1 , the search space

associated with one bit.
For variable-length strings the story is similar. In this case,
there is first a natural decomposition ofΩv

`max
into the form

Ωv
`max

=
`max⊕
`=1

Ωf
`

where
⊕

represents a tensor sum of the spaces. Thus, the
search space of variable-length strings is just the tensor (di-
rect) sum of the search spaces for fixed-length strings of dif-
ferent lengths. One can then use (2) to find

Ωv
`max

=
`max⊕
`=1

⊗̀
i=1

Ωf
1 (i)

Thus, armed only with knowledge of the one-bit search
spaces we can easily generate the search spaces for fixed-
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or variable-length strings. Obviously, the fixed alphabet case
is especially simple.
Passing now to the case of trees, we divide the primitive set
P into subsetsPa, with elementspai, for i = 1, · · · , |Pa|,
of primitives of aritya, for a = 0, 1, · · · amax, whereamax is
the maximum arity of the primitives inP. So,P =

⋃
a Pa.

The elements of the search space can be represented as trees,
with nodes labelled with primitives in such a way that labels
have the appropriate arity for the structure of the tree, e.g.

√

+
��HH
x y

Alternatively, and equivalently, the elements of the search
space can be seen as sequences of primitives, such as√ +
x y, of appropriate arity so as to form a valid syntax tree.
Formally, a sequence is valid if it is part of a language with
the following grammar:

E → P0

E → P1E

E → P2EE

...

E → Pamax

amax︷ ︸︸ ︷
E · · ·E

P0 → p01 | p02 | · · · | p0|P0|

P1 → p11 | p12 | · · · | p1|P1|

...

Pamax → pamax1 | pamax2 | · · · | pamax|Pamax |

Note that it must be the case that|P0| > 0, that is, we
must have at least one terminal symbol. In this grammar
we used the prefix notation typical of Lisp and other lan-
guages, but we did not include any syntactic sugar, such as
brackets. We will, however, in the following, occasionally
represent programs using brackets, since this makes the cor-
respondence between expressions (programs) and their syn-
tax tree clearer. So, for example,− + x y x would be written
as(− (+x y)x).
The spaceΩt

d of program trees that can be constructed using
the primitives inP, and are of depth up tod, is built using
the following recursion:4

Ωt
0 = P0 Ωt

d =
amax⊕
a=0

Pa ⊗ (Ωt
d−1)

⊗a

Let nd = |Ωt
d| be the number of different programs of depth

at mostd (where a program including a single terminal has
depth 0) that can be constructed using primitives fromP.

4In this and the previous formulas⊗ can also be interpreted as the Carte-
sian product and⊕ as the set union operation.

Clearly we have:

n0 = |P0| nd =
amax∑
a=0

|Pa| × (nd−1)a

Example 1Search space for the case of trees with primitives
P = {x, y,

√
,+,×}. We haveamax = 2, P0 = {x, y},

P1 = {√ } andP2 = {+,×}. Then, using prefix notation,
Ωt

0 = {x, y} and

Ωt
1

=
2⊕

a=0

Pa ⊗ (Ωt
0)
⊗a

= P0 ⊕ P1 ⊗ Ωt
0 ⊕ P2 ⊗ Ωt

0 ⊗ Ωt
0

= {x, y} ⊕ {√ } ⊗ {x, y} ⊕ {+,×} ⊗ {x, y}
⊗{x, y}

Ωt
2

=
2⊕

a=0

Pa ⊗ (Ωt
1)
⊗a

= {x, y} ⊕ {√ } ⊗ Ωt
1 ⊕ {+,×} ⊗ Ωt

1 ⊗ Ωt
1

= {x, y}
⊕ {√ } ⊗ {x, y}
⊕ {√ } ⊗ {√ } ⊗ {x, y}
⊕ {√ } ⊗ {+,×} ⊗ {x, y} ⊗ {x, y}
⊕ {+,×} ⊗ {x, y} ⊗ {x, y}
⊕ {+,×} ⊗ {√ } ⊗ {x, y} ⊗ {x, y}
⊕ {+,×} ⊗ {+,×} ⊗ {x, y} ⊗ {x, y} ⊗ {x, y}
⊕ {+,×} ⊗ {x, y} ⊗ {√ } ⊗ {x, y}
⊕ {+,×} ⊗ {√ } ⊗ {x, y} ⊗ {√ } ⊗ {x, y}
⊕ {+,×} ⊗ {+,×} ⊗ {x, y} ⊗ {x, y} ⊗ {√ }

⊗{x, y}
⊕ {+,×} ⊗ {x, y} ⊗ {+,×} ⊗ {x, y} ⊗ {x, y}
⊕ {+,×} ⊗ {√ } ⊗ {x, y} ⊗ {+,×} ⊗ {x, y}

⊗{x, y}
⊕ {+,×} ⊗ {+,×} ⊗ {x, y} ⊗ {x, y} ⊗ {+,×}

⊗{x, y} ⊗ {x, y}

where, in the last step, we have distributed all sums over
products. Clearly, there are 13 subspaces that are summed up
tensorially. It is easy to see that the total number of programs,
n2, is2+2+2+8+8+8+32+8+8+32+32+32+128 =
302, which can be more easily calculated using the recursion
previously introduced obtaining

n0 = 2
n1 = 2 + 1× (n0) + 2× (n0)2 = 12
n2 = 2 + 1× (n1) + 2× (n1)2 = 302

2
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The example above suggests that an alternative but equiva-
lent characterisation ofΩt

d based on tree shapes is possible.
Let sd be the number of different shapes of depth at most
d that can be constructed using primitives fromP. This is
given by the recursion

s0 = 1 sd =
amax∑
a=0

(sd−1)a × δ(|Pa| > 0)

Let us then enumerate all shapes of up to depthd, and let
Si be theith shape in the set. Letn(S, a) be a function that
returns the number of nodes of aritya in shapeS, andar(x)
a function that returns the arity of nodex in a shape. We can
then write

Ωt
d =

sd⊕
i=1

⊗
j∈Si

Par(j)

where byj ∈ Si we mean that the tensor product ranges over
the nodes, denoted byj, in shapeSi. This gives us another
way of computingnd:

nd =
sd∑

i=1

amax∏
a=0

|Pa|n(Si,a)

Note that the semantics of the primitives is totally irrelevant
as far as the definition of the search space is concerned —
it only matters during fitness evaluation. The primitives are
simply labels for the nodes of the trees in the search space.
The only thing that really matters is their arity. In this sense
the arity of a primitive should not be thought of as the number
of arguments required by the primitive (seen as a function),
but rather as a description of how the primitive seen as a node
is meant to connect to other primitives (nodes). Also, we
can even have primitives with the same name and different
arities (like the unary minus sign and the binary minus sign
in standard algebra), as long as there is a way of determining
which is which (i.e. from their arity or from their position in
a tree).
Therefore, the primitive setP = P0 ∪ P2 with P0 = {0, 1},
andP2 = {0, 1} is a perfectly valid set. The difference be-
tween the primitives inP0 and the primitives inP2 is that the
primitives inP0 are followed bynoother primitive, while the
primitives inP2 are followed bytwo arbitrary sequences of
primitives (subtrees). In this exampleΩt

d is the space of all
binary trees of depth up tod with binary-labelled nodes.
Of particular interest for us is the case where only zero-ary
and unary primitives are allowed, i.e.P = P0 ∪ P1. In this
situationΩt

d ≡ Ωv
`max

is the space of variable-length linear
structures of length at most`max = d + 1. These can rep-
resent programs (e.g. in assembler code) or variable length
strings, as in the caseP0 = {0, 1} andP1 = {0, 1}, where
Ωv

d+1 is the space of variable-length bit strings of size up to

d + 1. The differenceΩt
d 	 Ωt

d−1 ≡ Ωf
` then represents

the space of linear structures of length exactly` = d + 1.
If |P0| = |P1| = A, as is the case for a search space of

variable-length strings drawn from an alphabet of cardinality
A, we havend =

∑d
k=0Ak+1 = (Ad+1 − 1)A/(A− 1).

If one orders the setsPi that make up the primitive set, it is
possible to identify their elements using integers. The cho-
sen order is not important, as long as one is consistent. For
example, if we have a primitives setP1 = {C, T,G, A} we
can identifyC with 0, T with 1, etc., but any other assign-
ment would also work. Similarly, if we reconsider the previ-
ous example, whereP = P0 ∪ P1 ∪ P2 with P0 = {x, y},
P1 = {√ } andP2 = {+,×}, we can index the primitives
as follows: x ↔ 0, y ↔ 1, √ ↔ 0, + ↔ 0 and× ↔ 1.
Note that we are reusing the same integer index for different
primitives. This is fine as long as we have a way of telling to
which arity group (Pi) an index refers to.5

In effect, this indexing operation creates a isomorphism be-
tween the original search space and the space of trees with
integer-labelled nodes. The simplest case is, of course, when
only primitives of arity 0 and 1 are used. In this case,
the search space is isomorphic to the space of variable-
length sequences of integers(x0, ...xd−1, xd) with xi ∈
{0, · · · , |P1|} for 0 ≤ i < d andxd ∈ {0, · · · , |P0|}. So,
if the search is further limited to sequences of primitives of
length`, the search space is isomorphic to an`-dimensional
cubic lattice (a hypercube in the caseP0 = P1 = {0, 1} of
binary strings).

IV. The δ-basis

As we have emphasised, the states of populations of strings
or programs are naturally represented by particular functions
(incidence or frequency vectors) on the search space. We are
therefore led to look for natural bases in which these func-
tions (and others) may be expanded. Let us denote byFΩ

the space of all univariate functions on our search space,Ω,
whatever it may be, toR. We want to introduce a basis for
this space.
A natural basis forFΩ is formed from thecharacteris-
tic functions ofΩ itself, which are|Ω| unit amplitudeδ-
like functions, each with support on a single element ofΩ.
We call this basis of characteristic functions theδ-basis[2],
Bδ(Ω). If we index this basis usingv ∈ Ω, the functions in
theδ-basis have the form

δv(x) = δ(x = v),

whereδ(expr) is a function that returns 1 if expressionexpr
is true, and 0 otherwise.
The expansion of an arbitrary functionf in the δ-basis is
particularly simple, the coefficient of a basis element (delta
function) being the value off at the corresponding point
of Ω,

f =
∑

v

f(v)δv , (3)

5Clearly for primitive sets that are subsets of the space of integers, such
asP1 = {0, 1}, there is a natural order, which we may want to respect
when indexing their elements.



Building Block Basis for Genetic Programming 189

wherev ranges over all elements of the search space andδv

has support only onv.
To obtain a more explicit representation ofBδ(Ω) we need
to consider a specific search space. Once again, for the pur-
poses of illustration we begin with fixed-length strings. In
this case theδ-basis consists of|Ωf

` | characteristic functions,
each one associated with a point inΩf

` . The points ofΩf
`

may be placed on aǹ-dimensional lattice withAi points in
theith direction. If the coordinates of a pointv on the lattice
are(v1, v2, . . . , v`), thenδv = δ1

v1
δ2
v2

. . . δ`
v`

whereδi
vi

is the
characteristic function for theith locus with coordinatevi in
theith direction. An explicit representation ofδi

vi
is [1]

δi
vi
≡ Nixi(xi − 1) . . . ̂(xi − vi) . . . (xi −A+ 1)

N−1
i ≡ (−1)A−vi−1vi!(A− vi − 1)!

(hats denote omission). Notice thatδi
vi

is the characteristic
function of thexi = vi hyperplane. Thus, we may write the
δ-basis as

Bδ(Ω
f
` ) = {δv(1), δv(2), . . . , δv(|Ωf

` |)
}

where δv(k) = δ1
v1(k)δ

2
v2(k) . . . δ`

v`(k) is the characteristic
function for the vertex represented by the vectorv(k).
Example 2δ and vertex bases for̀= 2,A = 3 stringsThe
δ-basis is

Bδ = {δ00, δ01, . . . , δ22}
= {δ1

0δ2
0 , δ1

0δ2
1 , . . . , δ1

2δ2
2}

= {(x1 − 1)(x1 − 2)(x2 − 1)(x2 − 2)/4,

−(x1 − 1)(x1 − 2)x2(x2 − 2)/2, . . . ,

x1(x1 − 1)x2(x2 − 1)/4} . (4)

2

In section III we saw that the search space could be written
as a tensor product,Ωf

` =
⊗`

i=1 Ωf
1 (i). We can thus use the

rule for constructing bases on tensor product spaces to con-
struct the basis forΩf

` from the bases forΩf
1 (i). For example,

if the bases for spacesV andW areBV = {v1, . . . , vn} and
BW = {w1, . . . , wm} respectively, then the basisBV⊗W for
the tensor productV ⊗W is taken to be

BV⊗W = {v1⊗w1, . . . , v1⊗wm, v2⊗w1, . . . , vn⊗wm} ,

The δ-basis for Ωf
1 (i) is Bδ(Ω

f
1 (i)) =

{δi
vi

(0), δi
vi

(1), . . . , δi
vi

(A − 1)} Thus, a basis forΩ is

Bδ(Ω
f
1 (1)⊗Ωf

1 (2)⊗ . . .⊗Ωf
1 (`)). If we order the elements

of Bδ(Ω
f
1 (i)) into a vector then we can write

Bδ(Ω
f
` ) = Bδ(Ω

f
1 (1))⊗Bδ(Ω

f
1 (2))⊗ . . .⊗Bδ(Ω

f
1 (`))

≡
⊗̀
i=1

Bδ(Ω
f
` ) (5)

and so we see how theδ-basis for length-̀ strings may be
constructed from the bases for length-one strings. For a fixed
alphabet sizeBδ(Ω

f
` ) = (Bδ(Ω

f
1 ))⊗`.

The case of variable-length strings follows straightforwardly
from the fixed-length case using the fact thatΩv

`max
is a tensor

sum of theΩf
` for fixed-length strings. Thus,

Bδ(Ωv
`max

) =
`max⊕
`=1

Bδ(Ω
f
` )

whereBδ(Ω
f
` ) can be written in terms of thè= 1 δ-basis

using (5), and the basis,BV⊕W , for a tensor sumV ⊕W is
taken to be

BV⊕W = {v1, v2, . . . , vn, w1, . . . , wm} .

We now pass to the more complicated case of programs. In
this case, in order to give a more precise description of the
structure of the functions in theδ-basis we need to be able to
analyse the composition of the elements of the search space
– trees – node by node. Since trees have a natural recursive
structure, as was seen in section III, we will achieve this by
using recursion.
Let v be an element of the search spaceΩt

d. We define the
following functions:

• rt(v) which returns the primitive labelling the root node
of v,

• ch(v, i) which returns theith subtree of the root ofv,

• ar(x) which returns the arity of the primitive labelling
a node.

So, for example, ifv = (− (+x y) x), thenrt(v) is the prim-
itive “−”, ch(v, 1) is the subtree(+x y), rt(ch(v, 1)) is the
primitive “+” andar(rt(v)) = 2.
So, for eachv ∈ Ωt

d we have a basis functionδv ∈ Bδ(Ωt
d)

recursively defined as follows:

δv(x) = δ
(
v

r= x
)
×

ar(rt(v))∏
i=1

δch(v,i)(ch(x, i))

where the comparison operationv
r= x is defined asrt(v) =

rt(x) and we use the convention
∏0

i=1 · = 1 which prevents
an infinite recursion. The recursion terminates prematurely
when there is a mismatch of arity or label between two nodes
in x andv, in which caseδv(x) = 0. If, instead the depth-
first comparison ofx andv is successful, thenδv(x) = 1.6

This formulation is important because it shows how effec-
tively the δ-basisBδ(Ωt

d) is constructed by combining ten-
sorially Bδ(Ωt

d−1) and the basesBδ(Pa) (for a = 0, 1, · · · )

6One can easily see this by unrolling the recursion. This produces
an expression forδv(x) which is a product ofδ(expr)-type expressions
(each one checking that a particular node in the two trees matches) and 1’s
(these derive from the terminating condition

Q0
i=1 · = 1). For example,

δ(v1v2v3) ((x1x2x3)) = δ(v1 = x1)×δ(v2 = x2)×1×δ(v3 = x3)×1.
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of characteristic functions over the primitive set. That is

Bδ(Ωt
d) =

amax⊕
a=0

Bδ(Pa)⊗Bδ(Ωt
d−1)

⊗a

If one could unroll the recursion, one would see thatBδ(Ωt
d)

is a tensor sum with as many terms as there are possible pro-
gram shapes. Each term in the sum is a tensor product con-
taining as factors theδ-bases for the subsetsPa of the primi-
tive set.7

As before, we can also recover the linear case as a special
version of the tree case. For instance, for variable-length lin-
ear structures with|P1| = |P0|, we can unroll the recursion
in the definition ofδv(x), obtaining the following equivalent
definition for the elements of theδ basis:

δv(x) = δ(|v| = |x|)
|v|∏
i=1

δ(vi = xi)

where |v| and |x| are the number of primitives inv and
x, respectively, and subscripts are used to index the primi-
tives from the root node (leftmost primitive) to the leaf node
(rightmost primitive). Likewise, we can unroll the recursive
tensorial definition ofBδ(Ωt

d) obtaining:

Bδ(Ωt
d) ≡ Bδ(Ωv

d+1)

=
(
1⊕Bδ(P1)⊕ (Bδ(P1))⊗2

⊕ . . .⊕ (Bδ(P1))⊗d
)
⊗Bδ(P0)

=

(
d⊕

i=0

(Bδ(P1))⊗i

)
⊗Bδ(P0)

where we should remember the subtle difference between the
size (the number of primitives)|x| of a linear structurex and
its depthd(x), when the structure is seen as a tree, i.e., that
d(x) = |x| − 1.
As mentioned earlier, if we index the elements of the prim-
itive set, in the linear case, the search space is isomor-
phic to the space of variable-length sequences of integers
(x0, ...xd−1, xd) with xi ∈ {0, · · · , |P1|} for 0 ≤ i < d and
xd ∈ {0, · · · , |P0|}. In this case, we can explicitly represent
characteristic functions using polynomials. To illustrate this,
let us consider the special caseP0 = P1 = {0, 1, · · · A− 1},
and d = ` − 1. That is, the search space is the space of
variable-length strings of up to length` built from an alpha-
bet of cardinalityA.
We can see in the following examples how our recursion for-
mula for trees, restricted to the arity-one case, yields the
same basis as the variable-lengthδ-basis written down ear-
lier.

7Bases forFΩ aresetsof functions. When we say that we create them
combining, via tensor sums and tensor products, other, lower-dimensional,
bases we assume that the bases are represented as(1, 0) tensors. Alterna-
tively, one can treat them as sets, but in this case we must interpret⊗ as
Cartesian product and⊕ as the set union.

Example 3 δ-basis for variable-length binary strings.The
caseA = 2 for binary strings is particularly simple, as
in this case everything can be built from two characteristic
functions: δ(1 = xi) = xi and δ(0 = xi) = x̄i, where
x̄i = (e − xi) is the bit complement ofxi, e here being un-
derstood as the function (over the primitive set) that always
returns 1. In this case, if we use the standard (“odometer”-
like) order for binary strings, and we take` = 2, we have

Bv
δ (Ωv

2)
= Bδ({0, 1})⊕Bδ({0, 1})⊗2

= {x̄(1)
1 , x

(1)
1 } ⊕ {x̄(2)

1 , x
(2)
1 } ⊗ {x̄(2)

2 , x
(2)
2 }

= {x̄(1)
1 , x

(1)
1 } ⊕ {x̄(2)

1 x̄
(2)
2 , x̄

(2)
1 x

(2)
2 , x

(2)
1 x̄

(2)
2 , x

(2)
1 x

(2)
2 }

= {x̄(1)
1 , x

(1)
1 , x̄

(2)
1 x̄

(2)
2 , x̄

(2)
1 x

(2)
2 , x

(2)
1 x̄

(2)
2 , x

(2)
1 x

(2)
2 }

where superscripts of the form(i) have been used to repre-
sent length-class. 2

Example 4δ basis for variable-length linear structures with
A = 3 and ` = 2 This time theδ-basis, in the odometer
ordering, is given by

Bδ(Ωv
2)

= {(x(1)
1 − 1)(x(1)

1 − 2)/2,−x
(1)
1 (x(1)

1 − 2),

x
(1)
1 (x(1)

1 − 1)/2,

(x(2)
1 − 1)(x(2)

1 − 2)(x(2)
2 − 1)(x(2)

2 − 2)/4,

−(x(2)
1 − 1)(x(2)

1 − 2)x(2)
2 (x(2)

2 − 2)/2,

. . . , x
(2)
1 (x(2)

1 − 1)x(2)
2 (x(2)

2 − 1)/4} .

2

We have considered here theδ-basis as being the natural ba-
sis for expanding any univariate function on the search space
or, equivalently, any vector. We have mentioned that also
of interest, when one considers mutation and recombination,
are multivariate functions, which in their turn have a geomet-
rical interpretation as tensors. We emphasise, without going
into further detail, that theδ-basis can also serve to build up
bases for these higher order tensors too. For instance, for a
(0, 2) tensor the natural basis would beBδ(Ω)⊗Bδ(Ω). For
details the reader may consult [1].

V. Building Block Basis

As we have seen, theδ-basis forFΩ is formed from the char-
acteristic functions of single elements (singletons) ofΩ. We
know that there is a benefit in defining a basis using char-
acteristic functions for subsets ofΩ other than singletons in
the case of fixed-length strings. TheBuilding Block Basis
(BBB), which we will denote asBβ(Ω), does exactly this.
One may therefore wonder if these benefits extend to the
more general case of variable-length strings and trees.
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While in the previous sections we have proceeded from the
particular (fixed- and variable-length strings) to the general
(trees), in this section we will develop the theory directly for
the space of trees and we will then specialise to the simpler
cases to better exemplify it.
In the BBB the subsets of the search space areschemata
which are syntactically represented using either trees or sen-
tences from the following grammar:

E → P0 | P1E | · · · | PamaxE · · ·E
P0 → p01 | p02 | · · · | p0|P0| | *0

P1 → p11 | p12 | · · · | p1|P1| | *1

...

Pamax → pamax1 | pamax2 | · · · | pamax|Pamax | | *max

Note that this is exactly the same syntax as for the elements
of the search space, but we have extended the lexicon with
the symbols “*a” (for a = 0, 1, · · · , amax). These are in-
terpreted as “don’t care” symbols that stand for exactly one
primitive of aritya. So, semantically a schemaH = h1h2...
is the set of all programs that match its syntactic represen-
tation (i.e., all programs with the same structure ash1h2...
and with exactly the same primitives ash1h2... for all the
non-”don’t care” symbols). An alternative interpretation for
the symbols*a is to consider them as the sets of all valid
primitives of aritya, that is*a = Pa.
Although the number of possible schemata of up to depthd
is much smaller than the number of elements of the powerset
(the set of all subsets) ofΩt

d, this number is substantially
bigger thannd. So, clearly, a basis forFΩt

d
could not contain

the characteristic functions of all possible schemata. Indeed,
the BBB selects only one specific subset of schemata. In the
simplest case, the set is constructed as follows:

• For each subset of a given arity,Pa, of the primitive set,
wherea = 0, · · · , amax, we choose a primitivepa, and
we replace it with the symbol*a.

• We generate all valid trees/sentences in this new lan-
guage. We call this setHt

d. Some trees inHt
d will be

ordinary elements of the search space (e.g., programs),
but most will represent schemata (sets of elements).

• Bβ(Ωt
d) is the set of characteristic functions for the ele-

mentsHt
d (interpreted as subsets ofΩt

d).

There is complete freedom as to which primitive to re-
place with a “don’t care” symbol in eachPa. So, there are∏amax

a=0 |Pa| different BBBs that can be constructed in this
way. Furthermore, in the most general situation, one can
apply a different renaming convention for each tree shape
and, even, for each node in each shape class, obtaining, in all
cases a valid BBB. BBBs built in this more general way offer
advantages when writing the evolution equations for selecto-
recombinative EAs, in that it allows the “expansion” of the
BBB around any particular search space element of interest.

In the following, however, for simplicity of exposition we
will ignore this aspect of the BBB-construction procedure.
Let us see how we can express more precisely the structure
of the characteristic functions in the BBB. For eachv ∈ Ht

d

we have a basis functionβv ∈ Bβ(Ωt
d) recursively defined

as follows:

βv(x) = δ(x
r
∈ v)×

ar(rt(v))∏
i=1

βch(v,i)(ch(x, i))

where

δ(x
r
∈ v) = δ(v r= x)

+ δ(v
r

6= x)× δ
(
rt(v) = *ar(rt(x))

)
which returns 1 if either the root ofx and root ofv are identi-
cal (non-*) symbols, or if the root ofv is a* symbol and the
root of x is a primitive with the same arity as that* symbol.

The functionδ(x
r
∈ v) returns 0 otherwise. So, an alternative

way of expressing it is the following

δ(x
r
∈ v) =

∑
p∈rt(v)

δ (rt(x) = p)

where, with a minor notational stretch, we treat the* sym-
bols returned byrt(v) as sets of primitives and the ordinary
primitives returned byrt(v) as singletons (containing such
primitives).

Clearly, the functionsδ(x
r
∈ v) depend only onrt(v) and

rt(x), not on the actual structure and content of the rest of the
treesx andv. So, these are characteristic functions, defined
over the primitive setP, i.e.,δ(x

r
∈ v) : P → {0, 1}. They

are particular in that they return 1 only on a wholePa (when
rt(v) = *a) or on just singletons (whenrt(v) is an ordinary
primitive of aritya).

By substituting the expression ofδ(x
r
∈ v) into βv(x) we

obtain

βv(x) =
∑

p∈rt(v)

δ (rt(x) = p)

×
ar(rt(v))∏

i=1

βch(v,i)(ch(x, i))

which reveals the relationship between the elements of the
δ-basis and the characteristic functions in the BBB:βv(x)
is the sum of characteristic functionsδw(x) of all the w ∈
Ωt

d which “match” (or, more precisely, are contained) in the
schemav, i.e.

βv(x) =
∑
w∈v

δw(x)

Again, a recursive formulation is important because it shows
how effectively the BBB,Bβ(Ωt

d), is constructed by com-
bining tensoriallyBβ(Ωt

d−1) and the basesBβ(Pa) (for
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a = 0, 1, · · · ) of characteristic functions over the primitive
set. That is

Bβ(Ωd) =
amax⊕
a=0

Bβ(Pa)⊗Bβ(Ωt
d−1)

⊗a

where the basisBβ(Pa) includes:

• The characteristic functions for the singletons{pai} for
all valid elementspai of Pa, except the element ofPa

that has been replaced by*a. These, of course, are the
same for bothBβ(Pa) andBδ(Pa).

• The characteristic function for the whole setPa.

Let us assume, to start with, that the setsPa are ordered and
that the element of eachPa we have replaced with*a is the
first element. If we then arrange the elements ofBβ(Pa) and
Bδ(Pa) in two column vectors,xa

δ , xa
β we have,

xa
β = Λaxa

δ , (6)

where

Λa ≡



1 1 1 1 · · · 1
0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

0 0 0 0 · · · 1


is an invertiblea× a matrix with inverse

Λ−1
a ≡



1 −1 −1 −1 · · · −1
0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

0 0 0 0 · · · 1


.

The structure ofΛa is simple. It is the identity matrix of size
a, in which the 0’s in the first row have been turned into 1’s.
Note that this is exactly the elementary matrix that needs to
tensor up to construct the BBB for fixed-length strings from
an alphabet withA symbols [1]. Also, note that, if the ele-
ment ofPa replaced with*a is not the first one but theith,
the structure ofΛa remains the same, except that now the 0’s
in theith row are turned into 1’s.
Any δ-basis, includingBδ(Pa), is a basis (as it is trivially
provable), irrespective of the space it is built on. So, the in-
vertibility of Λa guarantees that the set of characteristic func-
tionsBβ(Pa) is also a basis forFPa

.
If the primitive setsPa are ordered, we can then extend their
order to the space of trees as follows:

• For primitives of the same arity,a, we adopt the order
in Pa.

• For primitives of different arity, primitives of lower arity
preceed primitives with higher arity, i.e., givenx ∈ Pa

andy ∈ Pb with a 6= b, x > y if a > b.

• For anyx, y ∈ Ωt
d, if rt(x) precedesrt(y) (based on

the points above), thenx precedesy.

• For any x, y ∈ Ωt
d such thatrt(x) = rt(y) and

ar(rt(x)) = 1. thenx precedesy if rt(ch(x, 1)) pre-
cedesrt(ch(y, 1)).

• For any x, y ∈ Ωt
d such thatrt(x) = rt(y) and

ar(rt(x)) = 2, thenx precedesy if rt(ch(x, 1)) pre-
cedesrt(ch(y, 1)) or rt(ch(x, 1)) = rt(ch(y, 1)) and
rt(ch(x, 2)) precedesrt(ch(y, 2)).

• We proceed similarly to compare trees with roots of ar-
ity a > 2.

For linear structures this produces the classical odometer or-
dering.
If we use forBδ(Ωt

d) the same order as forΩt
d, we can now

place the elements ofBδ(Ωt
d) in a column vectorxΩt

d

δ . Nat-
urally, we can do exactly the same thing forHt

d – the space
of schemata in the BBB, andBβ(Ωt

d), obtaining a column

vectorxΩt
d

β . We want to find the matrixΛt
d that performs the

basis transformation

xΩt
d

β = Λt
dx

Ωt
d

δ

Because of the recursive nature of the search spaces we have

xΩt
d

δ =
amax⊕
a=0

xa
δ ⊗

(
x

Ωt
d−1

δ

)⊗a

and

xΩt
d

β =
amax⊕
a=0

xa
β ⊗

(
x

Ωt
d−1

β

)⊗a

That is, the vector representations of BBB andδ-basis for a
space of a certain dimension are constructed by appropriately
combining the vector representations of the same bases but
for spaces of lower dimension. From this it follows that

xΩt
d

β =
amax⊕
a=0

Λaxa
δ ⊗

(
Λt

d−1x
Ωt

d−1
δ

)⊗a

and so the transformation matrix we are looking for is

Λt
d =

amax⊕
a=0

Λa ⊗
(
Λt

d−1

)⊗a

the recursion ending withΛt
0 = Λ0. Because of the invert-

ibility of the Λa’s, and the properties of tensor products, this
is invertible, with inverse

(
Λt

d

)−1 =
amax⊕
a=0

Λ−1
a ⊗

((
Λt

d−1

)−1
)⊗a

This tells us that the BBB is, indeed, a basis forFΩt
d

and it
shows that the corresponding BBB transformation matrix is
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constructed from a handful of small transformation matrices,
Λa.
Example 5 The δ- and Building Block bases for binary
strings with ` = 1 and ` = 3 For ` = 1, the δ-basis
of section IV isBδ(Ω

f
1 ) = {x̄1, x1}. For binary strings

P0 = {0, 1}. If we replace the symbol 0 with∗0, then
the BBB isBβ(Ωf

1 ) = {e, x1}, wheree is a constant func-
tion that always returns 1. Arranging the basis elements in
columns,xδ = (x̄1, x1)T , xβ = (e, x1)T we have,

xβ = Λ1xδ , (7)

whereΛ1 ≡
(

1 1
0 1

)
and the subscript 1 refers to the

length of the strings.
For ` = 3, if we replace the symbols 0 with∗’s in P1 =
P0 = {0, 1}, then the BBB is

Bβ(Ωf
3 ) = {e, x3, x2, x2x3, x1, x1x3, x1x2, x1x2x3}.

Note that this consists of the characteristic functions of all
k-cubes, with0 ≤ k ≤ ` = 3, containing the string 111,
ranging from the entire 3-cube to the vertex itself. The use of
the standard tensor product ordering for the basis elements,
mentioned earlier, becomes clear if one substitutese’s for
the missing coordinates in each of the above monomials, i.e.,
writing the basis as{e e e , e e x3, e x2e , . . .}. The BBB for
` = 3 can be written as a tensor product

Bβ(Ωf
3 ) = Bβ(Ωf

1 )⊗Bβ(Ωf
1 )⊗Bβ(Ωf

1 )
= {e, x1} ⊗ {e, x2} ⊗ {e, x3}

The matrixΛ3 that effects the transition between the two
bases is the tensor cube of the matrixΛ1 defined above, i.e.,
Λ3 = Λ⊗3

1 ≡ Λ1 ⊗ Λ1 ⊗ Λ1. 2

In the more general case ofΩf
` , we can see thatΛ` must

satisfy the recursion relation

Λ` = Λ1 ⊗ Λ`−1 =
(

Λ`−1 Λ`−1

0 Λ`−1

)
= Λ⊗`

1 . (8)

The matrix elements of the BBB transformationΛ`, (Λ`) J
I ,

are such that(Λ`) J
I = 1 if the vertexJ is contained in the

k-cubeI, and is zero otherwise, i.e. the stringI is a member
of the schemaJ .
Example 6 Building Block basis forΩv

`max
, with `max = 2

andA = 3 We choose arbitrarily the allele0 as the allele to
be replaced by∗, then the schemata used in the BBB, in the
odometer ordering, are

{* , 1, 2, ** , *1, *2, 1* , 11, 12, 2* , 21, 22} , (9)

where* represents the three strings0, 1 and2 and ** the
nine strings00, 01, 02, · · · , 22. Similarly, *1 represents the
three strings01, 11 and21. Geometrically the schemata in

the BBB are hyperplanes. The BBB is

Bβ = {δ∗, δ1, δ2, δ∗∗, δ∗1, . . . , δ22}
= {δ1

∗, δ
1
1 , δ1

2 , δ1
∗δ

2
∗, δ1

∗δ
2
1 , . . . , δ1

2δ2
2}

= {1,−(x(1)
1 − 2), (x(1)

1 − 1), 1,

−(x(2)
1 − 1)(x(2)

1 − 2)(x(2)
2 − 2)/2, . . . ,

(x(2)
1 − 1)(x(2)

2 − 1)} .

The coordinate transformation matrix that transforms be-
tween theδ- and Building Block bases is

Λv
2 =

(
Λf

1 0r

0c Λf
2

)
(10)

where0r is a3× 9 matrix with all zero entries,0c is a9× 3
matrix with all zero entries and

Λf
1 =

 1 1 1
0 1 0
0 0 1

 (11)

and

Λf
2 = Λf

1 ⊗ Λf
1

=



1 1 1 1 1 1 1 1 1
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1
0 0 0 1 1 1 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


(12)

2

Example 7 Building Block basis for trees withP =
{x, y,+,−,×} and maximum depthd = 1 (two levels)With
these choices we have the following program space

Ωt
1 =

x , y , +
��HH
x x

, +
��HH
x y

,

+
��HH
y x

, +
��HH
y y

, −
��HH
x x

, −
��HH
x y

,

−
��HH
y x

, −
��HH
y y

, ×
��HH
x x

, ×
��HH
x y

,

×
��HH
y x

, ×
��HH
y y


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If we replace the primitivesx and+ with “don’t care” sym-
bols * of appropriate arity, we obtain the schemata forming
the BBBBβ(Ωt

1), namely

Ht
1 =

∗ , y , *
��HH
* *

, *
��HH
* y

,

*
��HH
y *

, *
��HH
y y

, −
��HH
* *

, −
��HH
* y

,

−
��HH
y *

, −
��HH
y y

, ×
��HH
* *

, ×
��HH
* y

,

×
��HH
y *

, ×
��HH
y y

 .

Thanks to the recursive and tensorial structure of the search
space we can write

Bβ(Ω1) = Bβ(P0)⊕Bβ(P2)⊗Bβ(Ωt
0)
⊗2

whereBβ(Ωt
0) = Bβ(P0), and so

Bβ(Ω1) = Bβ(P0)⊕Bβ(P2)⊗Bβ(P0)⊗Bβ(P0)

where

Bβ(P0) =

 ∑
p∈{x,y}

δ(x = p), δ(x = “y′′)


and

Bβ(P2) =

 ∑
p∈{+,−,×}

δ(x = p), δ(x = −), δ(x = ×)


Note, that the elements of these two sets are univariate func-
tions, hence the argumentx.
If x

(0)
1 represents the primitive in the (only) node in trees of

depth 0,x(1)
1 represents the root node of trees of depth 1,x

(1)
2

represents the first (left-most) child of the root node, andx
(1)
3

represents the second child, then we can write:

Bβ(Ω1)

=

 ∑
p∈{x,y}

δ(x(0)
1 = p), δ(x(0)

1 = “y′′)


⊕

 ∑
p∈{+,−,×}

δ(x(1)
1 = p), δ(x(1)

1 = −), δ(x(1)
1 = ×)


⊗

 ∑
p∈{x,y}

δ(x(1)
2 = p), δ(x(1)

2 = “y′′)


⊗

 ∑
p∈{x,y}

δ(x(1)
3 = p), δ(x(1)

3 = “y′′)

 .

As there are two of them, the transformation matrix to go
from theδ-basis to the BBB for the primitives of arity 0 is

Λ0 ≡
(

1 1
0 1

)

while for the three primitives of arity 2 it is

Λ2 ≡

 1 1 1
0 1 0
0 0 1

 .

So, the coordinate transformation matrix for the trees of up
to depth 1 considered in this example is

Λt
1 = Λ0 ⊕ Λ2 ⊗ Λ0 ⊗ Λ0

=
(

1 1
0 1

)

⊕

 1 1 1
0 1 0
0 0 1

⊗
(

1 1
0 1

)
⊗
(

1 1
0 1

)

=
(

1 1
0 1

)

⊕

 1 1 1
0 1 0
0 0 1

⊗


1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1


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=
(

1 1
0 1

)

⊕



1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1



=



1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0

1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1


2

VI. Conclusions

In this paper, inspired by the recombinative GA case for
fixed-length strings, we showed that there are natural gen-
eralisations of the BBB to the case of variable-length strings,
and to the case of trees. Furthermore, we developed a mathe-
matical framework within which these basis transformations
may be written. The search or configuration spaces of strings
and trees have both a natural recursive and modular structure.
The modularity manifests itself mathematically in terms of a
tensor sum structure ofΩ, composed of naturally indexed
subspaces. The modularity is indexed by string length in the
case of variable-length strings and by tree depth or tree shape
in the case of trees. Recursivity, meanwhile, is manifest in
the fact that the search space for a higher dimension sub-
space can be generated from an associated lower order one.
For instance, it was known previously that for fixed-length
strings, the basis for a giveǹcould be generated by taking
a tensor product of the bases for` = 1. As Ω, generally,
has a modular-recursive structure, manifest in the presence
of tensor sums and products, we showed that knowledge of
Ω and any basis thereon could be generated from the search
spaces and corresponding bases for single bits or primitives
of a given arity. Further, coordinate transformations between
the different bases can be effected by considering the trans-
formation matrices on the subspaces associated with single
bits or primitives of a given arity. It is a great simplifica-
tion that all the relevant coordinate transformations can be

achieved using a few simple underlying matrices which, in
some sense, act as “building blocks” themselves for con-
structing the seemingly complicated bases and transforma-
tions that exist on the search spaces.
Sometimes the mathematics of EAs, particularly trees, can
seem overwhelmingly complicated. This is chiefly due to the
difficulties of seeing the underlying mathematical structure.
Here, we have shown that the language of tensor sums and
tensor products is a very elegant way in which the structure
inherent in GAs and GP can emerge. It is known that the
BBB leads to great simplification of the dynamics of recom-
binative GAs with homologous recombination, leading to a
formulation where the creation of a string or schema via a
particular crossover mask is associated uniquely with asin-
glepair of conjugate schemata - Building Blocks. This is dis-
tinct to the case of strings, where, for a given mask, there are
potentially many string combinations that may give rise to
a particular target string. Interestingly, the dynamical equa-
tions written in the Building Block basis are identical to those
previously found using coarse-graining techniques. Having
found and analysed analogs of the BBB for variable-length
strings and trees, one may ask if these generalisations of the
BBB also lead to simplifications of the dynamics of homolo-
gous recombination for variable-length strings and trees. The
answer is yes and bears the key characteristic that for a given
analog of a crossover mask there is one and only one conju-
gate pair of schemata that give rise to an offspring string or
tree. This result will be examined in more detail in another
publication.
Although we have here concentrated on theδ- and Building
Block bases, it is clear that the formalism we have devel-
oped is applicable toany coordinate transformation. It will
be interesting to see what other interesting bases exist that
simplify the dynamics of EAs or facilitate the analysis of fit-
ness functions. Two natural candidates, for example, are the
generalisations of the Fourier and Taylor bases from the case
of fixed-length strings.
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