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Abstract The Building Block Basis (BBB) has recently been state spac€ for an EA is the space of all possible popula-
shown to be extremely useful in characterising the dynamics of tions (note that in this more general case the notion of search
genetic algorithms operating on fixed-length strings. In this pa- and configuration space do not necessarily coincide).nfFor
per we show that there is a natural generalisation of the BBB  strings,C naturally has dimensiofC| = 2"¢. This repre-

for variable-length strings and program trees. sentation, however, is somewhat over-specified. A more use-
ful representation in Evolutionary Computation (EC) is that
based on population vectors, which indicate, for each point
in the search space, how many, or what proportion of, indi-

An Evolutionary Algorithm (EA) can be viewed as a dynam-viduals sample that point. The population vector is a vector
ical system wherein one wishes to solve for the populatiol C With 2¢ components(Py, P, ..., P). Thus, repre-
stateat timet given the population state at some initial ime senting the state of the system via a frequency vector, in the
sayt = 0. The population state is often stated in terms oflynamical systems point of view, one is interested in the time
a frequency vecto®(t), whose component®; (t), give the evolution of P(¢) in C. If it was necessary to identify indi-
proportion of the population in stateat timet. Formally, Vvidual strings - even if they were of the same genotype - then
one specifies a fitness landscafg,}, a set of genetic oper- the frequency vector representation would not be adequate
ators,{0, }, and an initial population(0); then, there ex- and appeal would be made to a representation that specifies
ists an evolution operatoH(t) = H(t, {f1}, {0}, P(0)), the state of every individual in the population.

such thatP (t) = H(t, {f1}, {Ou}, P(0)). Now, C, as a vector space or a simplex, will admit sets of ba-
The states of the system are elements of a spaceetifegu- sis vectors with respect to which the components of a vector,
ration spaceC - which may be finite or infinite dimensional. such asP, may be defined. Linear transformations between
The nature of this space depends on how one parametri$¥¥ basis set and another may then also be defined. Such ba-
the states of the system. For instance, for the familiar case 9§ transformations are of particular relevance in dynamical
fixed-length binary strings of length the states of a string Systems, as it may well be that in a specific basis the dynam-
may be placed in a one-to-one correspondence with the végs looks particularly simple. This occurs very commonly in
tices of an¢-dimensional hypercube-dimensional in the mechanical systems. A simple example of this would be a
sense that it may be embeddediifi C in this case is the set particle constrained to move on a sphere embeddd ifin

of vertices of the hypercube, which has dimengiéh= 2¢ this case spherical polar coordinafest, ¢) are much more
and which coincides with theearch spac&. If, however, natural than Cartesian coordinatesy, z), as the constraint
the population includes more than one string, as is usual, tHeat the particle moves on the sphere = constant - is

[. Introduction
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much more naturally written in this coordinate system. Anunification of the theory underlying GAs and GP.

other simple mechanical example is that of a set of couplgdiven that coarse grained formulations have led to a great
harmonic oscillators, where the coordinates of the positiomaumber of advances in the theory of GAs and GP, and that in
of the oscillators are coupled between neighbours and hertte case of fixed-length strings a natural coarse graining can
the dynamics looks complicated. Passing to a description be implemented via a coordinate transformation, it is natu-
terms of the eigenmodes of the system however, gives a setraf to ask if such basis transformations also exist in the more
equations wherein the new coordinates(oare uncoupled, complicated cases of variable-length strings and trees. In par-
and therefore simple. Such simplifications are important iticular: do there exist analogs of the BBB for variable-length
that, when they are found, they inevitably illuminate what arstrings and trees? The answer to this question is yes and
the appropriate effective degrees of freedom of the dynamicfarms the subject of this paper.

system, thereby aiding in both the qualitative understanding) section Il we discuss briefly the spaces we will consider,
as well as the quantitative analysis, of the system. i.e., the search space and the space of configurations of the
Simplifications of the dynamics in an appropriate basis ambjects under discussion, be they fixed- or variable-length
not the exclusive reserve of physical, mechanical systenstyings or trees. In section Il we formalise these notions,
but also occur in the dynamics of EAs. For instance, iand note the recursive and tensorial nature of these spaces,
is well known that the dynamics of mutation for binaryshowing how the search spaces for strings or trees of up to
fixed-length strings looks simpler in the Walsh basis, as ia certain size can be generated from the search spaces for
that basis the mutation operator is diagonal (“simple”), theimpler objects. This is quite transparent in the linear case
appropriate effective degrees of freedom being the Walshhere the search space for lengtstrings can be built up as
modes [4, 3, 22, 23]. This simplification also occurs foran ¢/-fold tensor product of the search space for length-one
higher cardinality alphabets, and is equivalent to a Fourietrings. As the search space for variable-length strings can
analysis of the system. Similarly, selection looks “simple” be built up as a tensor sum of the search spaces for fixed-
diagonal and time independent - in the string basis. length strings of different sizes, the extension to this case
The most complicated operator is recombination. Neverthés almost immediate. Trees, naturally, are somewhat more
less, also in this case, for fixed-length strings, there existssabtle. In this case, we exhibit a natural recursion relation
preferred basis within which crossover looks simplest - thbuilt up in terms of tensor products and sums that relates the
Building Block basis (BBB) [16, 2]. The BBB is dual to search space for programs of up to degtte that of pro-

the Taylor basis, as studied in [24], and has already begmnams of up to deptlid — 1). Of course, as linear structures
found useful in concrete calculations [6], as well as beingan be generated from the more general tree representation,
interestingly related to geometric quantities in the theory ahis recursion relation also applies to strings and yields the
information [21]. In this basis the natural effective degreealready established relations for the linear case.

of freedom are schemata, the Building Blocks of a particuNext, in sections IV and V, we come to the crux of the matter:
lar string. For a given crossover mask there is a unique pan analysis of some natural coordinate bases on the search
of conjugate Building Blocks that join together to form thespaces for strings and programs. We first consider the nat-
string. For example, fof = 3: to construct a strind11  ural basis associated with the evolving objects themselves -
with a crossover mask: = 001, wherem; = 0 signifies strings and trees. In particular, we study a basis dthasis

take theith bit of the offspring from theth bit of the first - whose elements are characteristic functions that take value
parent, whilem; = 1 signifies take the bit from the secondone on one search point and zero elsewhere. Any univariate
parent, there is one and only one Building Block combinafunction on the search space can naturally be written in terms
tion that builds111 with this mask -11* and its conjugate of this basis. We then show that, due to the recursive struc-
*+ 1, Furthermore, the linear coordinate transformation thdtire of the search space itself, thévasis can be recursively
allows one to pass to the BBB can be simply generated faonstructed from thé-basis for single bits or primitives of
arbitrary ¢ by taking the/-fold tensor product of the trans- a given arity. Having established tlebasis, by exploiting
formation for¢ = 1. In fact, the whole machinery of re- the recursive structure of the search space, we then go on to
combination can be simply built up from the = 1 case consider the BBB. Having eased the reader into the notation
[2, 1]. The resulting form of the dynamical equations forand concepts by starting with the case of fixed-length strings,
a fixed-length GA with mutation, selection and homologoubere we dive straight into the general case of program trees.
recombination is then seen to be identical to that found previs there is a great deal of freedom as to which BBB one
ously by coarse graining methods that have given rise to saorks with, we restrict attention here to a particular manifes-
called “exact schema theorems” [14, 20, 15, 13, 19, 12, 18gtion of the BBB wherein one arbitrary symbol or primitive
These, in their turn, have allowed for a reconciliation of preis turned into a “don’t care” symbol. We show that the co-
viously, seemingly antagonistic formulations of the dynamerdinate transformation between theand Building Block

ics of GAs. Such coarse grained formulations have furthdrases is effected by a transformation matrix that, due to the
been extended to variable-length linear representations argtursive structure of the search space, can once again be
tree representations [7, 9, 8, 5, 10, 11, 17], thus leading tocanstructed from the transformation matrices that transform
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single bits or primitives of a given arity. Finally, in sectionalgorithms, like GAs and GP, is the composition of the pop-

VI we draw some conclusions. ulation, which is a functiong : Q{ — [0, 1], that assigns a
number (a proportion) to an element@f. In the language

Il. Search Space and Configuration Space of vectors this can be represented elegantly binaitence
frequency or population, vectoR = (¢1,¢2,...,¢|Q£‘).

We will begin by considering the different search spaces fhe elements of an incidence vector contain integers which
interest associated with fixed-length strings, variable-lengtfjgicate how many individuals of each type are currently
strings and program trees respectively. Although trees afgasent in the population, while the frequency vector nor-
th<=T most general _representation, fixed- and variable-len%l‘i'alises these numbers by the population size. In an ordinary
strings being particular cases where the depth and/or ari this vector represents the state of the system, and so, the
of the trees is restricted, they are substantially more congynfiguration spacé is the space of all such vectors, i.e., the
plicated than the simpler linear case. Hence, we will begi§implex.

with the latter. However, we will not dwell on the case Ofote thatin the above we have indexed the components of the
fixed-length strings, as they have been extensively treatgdciors using the integers, with as many integers as there are
elsewhere but, rather, use them for illustration, as they afpints ian. This is not strictly necessary. An incidence vec-
the least complicated and most easily understandable exagyy for example, can be indexed by the elements of the search
ple. _ . space themselves. However, in this case, when writing down
Consider the case of fixed-length strings of lengtivhere 5 vector (for example, for the purpose of doing some linear
the ith locus is associated with an alphabet of cardinality|gepra operation) one needs to decide in which order to list
A;. The search space, which we denote Wih where the e coordinates. This requires defining a total order on the el-
superscriptl emphasises the fixed-length nature of its eleaments of the search space, or, alternatively, defining a map-
ments, has dimensiol®/| = [];_, Aj;. For example, for ping between search space elements and integers (and then
the standard fixed binary alphabkﬂz,ﬂ = 2%, The configu- using the standard integer indexing for vectors). In the case
ration space for fixed-length strings is the@ = (Q{)@m, of fixed-length binary strings, a natural order is the “odome-

which represents the-fold tensor product of2/. As stated ter” ordering 0---00 < 0---01 < 0---10 < 0---11 <

in the introduction, given that a representation in terms of - < 1---11) and an equivalent natural mapping is the stan-
frequency vectors is most useful and of interest in EC, w@ard binary to decimal conversiofi (- - 00 < 0,0---01 <

will concentrate on the states of the system as specified By0 -~ 10 < 2,0---11 < 3,.--), and, indeed, these have
the frequencies. been used widely in the theory of GAs. However, for more
There are many different mathematical structures one m&pMplex spaces there may not be an obvious natural order,

associate witlf2 . For instance, the space of real univariatéind S0, if one wants to use vectors to represent information
about the problem, algorithm or search space, one needs to

functions overtl; Fop. 152 real vector space-, wher-e a Vec-explicitly define an order. Of course, results - theoretical or
tor, v, on Fs has|Q/| components. Of particular interest experimental - cannot depend on this arbitrary labelling.

in this paper are the different coordinate bases that span thisan incidence vector is indexed by the elements of the
vector space. Note that a vector on this space is an invagearch space itself, one can interpret it as a function of
ant object, i.e., it is basis independent. What do change, @fe form f : Q{ — N (or f : Q{ — 7, depend-
course, are the components of the vector when one pas#gg on the state representation chosen) plus a total order
from one coordinate basis to another. An important examplg/er Q{ or, equivalently, a bijective indexing functiop :

of a function/vector on the search space is the objective @2’1{ - {1,2,-- 7|Q£|}_ By the compositionf (g~ (z)) :
fitness functionf : Qf — R*, which associates points in 19 >

the search space to non-negative fitness values. Thus, fpéné
¢ =2and A = 2, Q) has 4 elements{00,01, 10,11},

.-, 1941} — R one then obtains an ordinary vector.
defines an indexing functignover the search space,

) : i then all of the functions mentioned in this section — fit-
and the fitness function can be written as a row VeCtofaqq nctions, selection probabilities for the elements of the

(foo, ft?l’ fro, f11)- .Another. natural class Of, gan@dqtes.thagearch space, etc. — can conveniently be represented using
are of importance in EAs, is that of probability distributions__ . |
' L ; o ordinary vectors otR/** .
defined ovef},, such as the selection probability, the proba, o : . .
o . : . As well as univariate functions, which naturally translate into
bility of generating offspring of a given genotype from a par-

: . T vectors onQ{, we can also introduce multivariate functions.
ticular genetic operator, elcThese probability distributions £r = ) . . .

. ; ¥ A natural bivariate function, for instance, is the mutation
are simply functions of the fornfi : ; — [0, 1].

. . : robability from one string to another. Just as univariate
Probably the most important function for population baseﬁ : : o .
unctions map naturally into vectors, so bivariate functions

. . - naturally map into matrices.
1strictly speaking probabilities do not form a vector space due to the y P
constraint that they must sum to one. In this case, they fosimalex
a simplex in ann-dimensional vector space being the convex hull of any 2More naturally they map inté1, 1) tensors. Similarly, recombination

n + 1 points that do not lie in any hyperplane of dimensiom. is naturally written in terms of a tri-variate function - the probability that two
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Finally, we sometimes need to talk about subsets of elemertkee relation betweedand?,,, isd+1 = ¢, Equation (1)

of the search space, and whether or not a point belongs taeluces td€2}| for variable-length strings in this case, while
set.Schematare special types of subsets of the search spadbg value for fixed-length strings can be found by considering
which are typically represented using patterns of symbol3i; — n4_1).

(e.g. 16+ 1, which represents all strings of length 5 starting

with 10 and ending with 1, or ~ +  which represents |||, The Recursive Structure of the Search

F Space

all programs where any tvyo terminal symbols are added t?ﬁ the previous section, we defined abstractly the search
gether). In the case of strings/trees or schemata, another in-

teresting function om{ is thecharacteristicor membership spaces for fixed-length strings, variable-length strings and

_ ¥ ; ) trees, showing how one could naturally associate uni- and
function -g : €; — {0, 1}, which returns 1 when applied t0 1, itivariate functions (equivalent to vectors and tensors),
an element that belongs to the set of interest, and 00therw'§%hemata etc., with the space. In this section, we wish to

Turning now to the case of variable-length strings, we denotg,qy that the search spaces themselves all have natural re-
the search spac@; , where/max is the maximum string ¢, qjve structures, where the space is built up from simpler,
length consideretiandv refers to the variable length of the |o\er-dimensional objects. As will be shown later, this recur-
elements in the search space. In this case, the dimensionsgfe structure greatly simplifies the analysis of these spaces

Lrmax

Qp s 19y | =>2" [T'_, As, where Ay, is the cardi- and manifests itself in the appearance of tensor products and
nality of the alphabet associated with tile locus of strings syms.

of length/. For a fixed alphabet of cardinality, this sim-  To jllustrate this recursive structure, we first consider the
plifies to|Q} | = A(A'm= —1)/(A —1). Just as for fixed- case of fixed-length strings. In this cas/ has a natural
length strings one may naturally introduce multivariate funcrecursive structure based on the concept of the direct (ten-
tions, vectors, schemata etc. As for fixed-length strings, i§or) product, whereim{ can be generated from{(i), the

for a population of variable-length strings of sizgone is  search space associated with itfebit, which is of dimen-
interested in the individual state of every string identifiedsionm{ (i)| = A;. Thus,

as distinct from any other, i.e. not just identified by geno-
type, then the natural configuration spates of dimension QZ = e d@e...e0©

’(ngax)@o”‘. If we are satisfied with the frequency or in- ¢
&Rl ) 2
=1

cidence vector representation then we have a much smaller
configuration space.

Finally, for trees, we denote the search spac@pywhered ¢ ¢ Iy
refers to the maximum tree deptf| is then the number of /1 = J[1e{6)
programs of depth up t@, which we denote,. This number =1

is not as §imple r?ls.in the linear case but,.as we will see in ﬂU\ﬂwere@ and ® represent a tensor product of the spaces.

next section, satisfies the recursion relation In the simpler case of a fixed cardinality alphabet, we can
max write Qf = (Qf)®¢, where®( as a superscript represents

no =[Pl na= Z [Pal x (na-1)" (1) ther-fold tensor product, in this case, @f , the search space

=0 associated with one bit.

where|P,| is the number of primitives of arity, amax being  For variable-length strings the story is similar. In this case,

the maximum arity. As with the linear case one can definthere is first a natural decomposition{f _ into the form

the space of univariate functions ovef, Far, in order to

define, for example, the fitness function for programs. In the max
. . . QU = of
same way, one may generally define vectors, including the Limax @ ¢
=1

incidence and frequency vectors, more general multivariate

functions and schemata. Additionally, if we wish to d|st|n-WhereEB represents a tensor sum of the spaces. Thus, the

guish program trees above and beyond their genotypic r€@sarch space of variable-length strings is just the tensor (di-

rese_ntatio_n then, for_a p"p‘i'ag,? n n)fprograms, the natural rect) sum of the search spaces for fixed-length strings of dif-
configuration space i$ = (Q2;)®”. Once again though, nor- ferent lengths. One can then use (2) to find

mally we will be happy with the much smaller space of fre-

guency/population vectors. As mentioned, linear strings are lmax ¢
just a special case of trees, where the maximum arity is 1 and o0 =P Qf (i)
=1 =1

parents/ and K give rise to an offsprind - that maps into &2, 1) tensor. ) )
See [2] for a discussion of this. Thus, armed only with knowledge of the one-bit search

30ne can, of course, consider the liffiitax — co spaces we can easily generate the search spaces for fixed-
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or variable-length strings. Obviously, the fixed alphabet cagelearly we have:

is especially simple. Qoo

Pa;sing now to the case of trees, we divide the primitive set no = |Po ng = Z Pl X (4_1)°
P into subsetsP,, with elementgp,;, fori = 1,--- ,|P,], pyrd

of primitives of aritya, fora = 0,1, - - - aynax, Wherea, . is
the maximum arity of the primitives i®. So,P = |, Pa.
The elements of the search space can be represented as t
with nodes labelled with primitives in such a way that label
have the appropriate arity for the structure of the tree, e.g. Qf = {z,y} and

Example 1Search space for the case of trees with primitives

']7es {x,y,\/ +, x}. We havea.x = 2, Po = {z,y},
g71 = {/} andP; = {+, x}. Then, using prefix notation,

v Q!
\ 2
Py - Dr.e@)”
T Y =
Alternatively, and equivalently, the elements of the search = Po@P1 ® Q)& Py @ Qf @
space can be seen as sequences of primitivgs, SLth as = {z,y}e{/te{zyre{+ x}@{z,y}
xy, of appropriate arity so as to form a valid syntax tree. ®{z,y}
Formally, a sequence is valid if it is part of a language with | ’
the following grammar: &
E — P = @P ® (Q)®
E P E
. : PlEE = {a:y}EB{\/}G@Q @ {+, x} 20 @
2
= {zy}
. o {y}o{ny)
E — P T -E o {yVie{yte{sy}
P, p;mf;oﬂ o & {yre{+xte{zy}e{sy}
— - | porp,
O 1+ X;rQx,y; 17,
Pr — pulpiel| - [pypy ¢ S@ oy} ® {z.v)
o {+ x}eo{y/te{z,y}t @ {zy}
& {+ x}e{+ x}e{zy}@{z,y} ®{z,y}
Pamax —  Pamaxl |pamax2 | e ‘pamax|Pamax| @ {+7 X} ® {l‘, y} Y {\/} ® {Z‘, y}
O 1+ Xr® QAT Yy ® T,
Note that it must be the case thid,| > 0, that is, we ¢ fetyleiny o /1o {ry)
® {+ x}eo{+x}te{zyte{z,y} @ {,/}

must have at least one terminal symbol. In this grammar
we used the prefix notation typical of Lisp and other lan- @iz, y}

guages, but we did not include any syntactic sugar, suchas & {+,x}® {z,y} ® {+, x} ® {z,y} ® {z,y}
brackets. We will, however, in the following, occasionally o (1} @ { /} @ {z.y} ® {+, x} ® {z.4}
represent programs using brackets, since this makes the cor- 2z, y}

respondence between expressions (programs) and their syn- Y

tax tree clearer. So, for example,+ x y = would be written ® {+. xte{+ x}te{z,y}@{z,y} @ {+, x}
as(— (+zy)x). o{z,y} ® {z,y)

The spacé?’, of program trees that can be constructed usin
the primitives inP, and are of depth up t@, is built using
the following recursion?

\%here, in the last step, we have distributed all sums over
products. Clearly, there are 13 subspaces that are summed up
tensorially. Itis easy to see that the total number of programs,

Amax Nn9,iS2+2+2+8+8+8+32+8+8+32+32+32+128 =
=P O = @ P, @ (Q_1)®° 302, which can be more easily calculated using the recursion
previously introduced obtaining
Letng = || be the number of different programs of depth ng = 2
at mostd (where a program including a single terminal has ny = 2+1x(ng)+2x (n0)2 =12

depth 0) that can be constructed using primitives frBm ne = 241x(n1)+2x (n)? =302

4In this and the previous formulas can also be interpreted as the Carte-
sian product aneé as the set union operation.
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The example above suggests that an alternative but equivariable-length strings drawn from an alphabet of cardinality
lent characterisation db’, based on tree shapes is possible4, we haven,; = 22:0 AR = (AT —1)A/(A-1).

Let s; be the number of different shapes of depth at most one orders the set®; that make up the primitive set, it is

d that can be constructed using primitives frgm This is  possible to identify their elements using integers. The cho-
given by the recursion sen order is not important, as long as one is consistent. For
example, if we have a primitives sy = {C, T, G, A} we

can identifyC with 0, T with 1, etc., but any other assign-
ment would also work. Similarly, if we reconsider the previ-
ous example, wher® = Py U P; U Py with Py = {z, y},

Let us then enumerate all shapes of up to deptand let P, = {\/} andP, = {+, x}, we can index the primitives

S; be theith shape in the set. Let(S,a) be a function that as follows:z < 0,y < 1, /7 < 0, + < 0andx < 1.
returns the number of nodes of arityn shapeS, andar(x)  Note that we are reusing the same integer index for different
a function that returns the arity of noddin a shape. We can primitives. This is fine as long as we have a way of telling to

Gmax

so=1 Sq = Z(Sd—l)a X(S(‘,Pa| > 0)

a=0

then write which arity group P;) an index refers t6.
. 5d In effect, this indexing operation creates a isomorphism be-
Qg = EB ® Par(j) tween the original search space and the space of trees with
i=1J€5% integer-labelled nodes. The simplest case is, of course, when

where byj € S; we mean that the tensor product ranges oveinly primitives of arity 0 and 1 are used. In this case,
the nodes, denoted bjy in shapeS;. This gives us another the search space is isomorphic to the space of variable-

way of computingn: length sequences of integefso, ...xq—1,24) With x; €
{0,---,|P1]} for 0 < i < dandzg € {0,---,|Po|}. So,
S TT 1o (n(Sia) if the search is further limited to sequences of primitives of
Nd = Z H [Pa] ™ length/, the search space is isomorphic tofagimensional
i=1a=0 cubic lattice (a hypercube in the caBg = P, = {0,1} of

Note that the semantics of the primitives is totally irrelevanfinary strings).
as far as the definition of the search space is concerned — _
it only matters during fitness evaluation. The primitives aréV. The ¢-basis

simply labels for the nodes of the trees in the search space. ) ) .
The only thing that really matters is their arity. In this sensé'S W€ have emphasised, the states of populations of strings

the arity of a primitive should not be thought of as the numbe}r Programs are naturally represented by particular functions

of arguments required by the primitive (seen as a function i,ncidence or frequency vectors) on the search space. We are
refore led to look for natural bases in which these func-

but rather as a description of how the primitive seen as a nod
is meant to connect to other primitives (nodes). Also, wdOns (and others) may be expanded. Let us denoté&dy

can even have primitives with the same name and differeHte SPace of all univariate functions on our search spiace,
arities (like the unary minus sign and the binary minus sigfhatever it may be, t&. We want to introduce a basis for
in standard algebra), as long as there is a way of determinif{yS SPace.

which is which (i.e. from their arity or from their position in A naturgl basis f‘?r]'—ﬂ is fprmed from t.hechar.acteris-
atree). tic functions of 2 itself, which are|Q| unit amplituded-

Therefore, the primitive s&® = P, U P, with P, = {0, 1} like functions, each with support on a single elemenflof
andP, = '{0 1} is a perfectly valid set. The difference be-WWe call this basis of characteristic functions theasig2],
tween the primitives ifP, and the primitives irP, is that the B(¢2)- If we index this basis using < €, the functions in
primitives inP, are followed bynoother primitive, while the t1€9-basis have the form

primitives in P, are followed bytwo arbitrary sequences of 5,(z) = 6(z = v),
primitives (subtrees). In this exampl¥, is the space of all . _ . .
binary trees of depth up @with binary-labelled nodes. whered(expr) is a function that returns 1 if expressierpr

Of particular interest for us is the case where only zero-afg true, and 0 otherwise.

and unary primitives are allowed, i.&2 = P, U P;. Inthis The expansion of an arbitrary functighin the J-basis is
situation), = Q} s the space of variable-length linearparticularly simple, the coefficient of a basis element (delta
structures of length at most,., = d + 1. These can rep- function) being the value of at the corresponding point
resent programs (e.g. in assembler code) or variable lenghS2,

strings, as in the casg, = {0,1} andP; = {0,1}, where F=Y"fwd,, 3)
7., is the space of variable-length bit strings of size up to v

; t t — of
d + 1. The differencel; © ;_, = (; then represents 5Clearly for primitive sets that are subsets of the space of integers, such

the space of linear StrUCFureS of length exaétly- d + 1. 45, — {0, 1}, there is a natural order, which we may want to respect
If |Po] = |P1] = A, as is the case for a search space ofhen indexing their elements.
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wherev ranges over all elements of the search spaceyand and so we see how thebasis for length¢ strings may be
has support only on. constructed from the bases for length-one strings. For a fixed
To obtain a more explicit representation Bf(2) we need alphabet S|ze!35(Qf) (B(;(Qf))@’f

to consider a specific search space. Once again, for the plihe case of variable-length strings follows straightforwardly
poses of illustration we begin with fixed-length strings. Irfrom the fixed-length case using the fact thgt is atensor
this case thé-basis consists qﬂf\ characteristic functions, sym of theﬂf for fixed-length strings. Thus,

each one associated with a pomtmf The points on

may be placed on aftdimensional lattice with4; points |n Cmax f
theith direction. If the coordinates of a pointon the lattice ) @ Bs (&)
are(vy,va, ..., ve), thend, = &% 62 ... 6", whered: isthe
characteristic functlon for thith locus with coordinate; in WhereBg(Q{;) can be written in terms of thé = 1 §-basis
theith direction. An explicit representation 6f, is [1] using (5), and the basigy o, for a tensor sunv’ @ W is
. taken to be
8y, = Niwi(w; = 1) .. (7 —vi) .. (2 — A+ 1)
Byaow = {v1, v2,...,Upn, W1,..., Wy} .

N7 = (DA ol (A — v — 1)

We now pass to the more complicated case of programs. In

(hats denote omission). Notice thi is the characteristic this case, in order to give a more precise description of the
function of thez; = v; hyperplane. Thus, we may write the structure of the functions in thebasis we need to be able to

d-basis as analyse the composition of the elements of the search space
f — trees — node by node. Since trees have a natural recursive
Bs(y) = {0u(1): 0u(2), - -5 5v(m{\)} structure, as was seen in section I, we will achieve this by
using recursion.
where 0,y = 5i1(k)5§2(k) . 5@(@ is the characteristic Let v be an element of the search spétie We define the
function for the vertex represented by the veatk). following functions:
?)éam.plc 20 and vertex bases far= 2, A = 3 stringsThe « rt(v) which returns the primitive labelling the root node
-basis is
of v,
Bs = {doo; do1, - -, 622} « ch(v, ) which returns théth subtree of the root af,
— (6162, 6162,..., 6162} _ . - .
« ar(z) which returns the arity of the primitive labelling
= {(1'171)(1’172)(1‘271)((5272)/4, a node.

—(z1 = 1)(21 — 2)w2(22 — 2)/2, ..., . . .
So, for example, it = (— (+x y) x), thenrt(v) is the prim-

1(er = Daa(ez —1)/4} . ) itive *—, ch(v, 1) is the subtreg+ z y), rt(ch(v, 1)) is the

primitive “+” and ar(rt(v)) = 2.

So, for eachy € Qf; we have a basis functioh, € Bs(2f))

recursively defmed as follows:

a

In section Il we saw that the search space could be written

as a tensor produc®) = ®'_, © (i). We can thus use the ar(rt(v))
rule for constructin ngases on tensor product spaces to con- d,(z) = ¢ (v = x) X H deh(v,i)(ch(z, 1))
struct the basis fd2; from the bases fdr){(z‘). For example, i=1
if the bases for spacéé andW areBy = {v1,...,v,}and . o .
Buw = {w1,...,wn ) respectively, then the basis, ¢ for where the comparison operatlonz x is defined ast(v) =
the tensor produd?’ ® T is taken to be rt(z) and we use the conventidr,_, - = 1 which prevents
an infinite recursion. The recursion terminates prematurely
Bveow = {01 @1, ..., U1 @ Wy, V2 @W1, ..., Uy @Wny}, when there is a mismatch of arity or label between two nodes
in z andv, in which case),(z) = 0. If, instead the depth-
The §- basis for Q{(Z’) is Bé(Q{(i)) — first comparison of: andw is successful, the, (z) = 1.
{5 (0 ), (1), _.,’(5; (A — 1)} Thus, a basis for is This formulation is important because it shows how effec-
Bs(Q 1( )® Qf( 2)® .®Q{(€))_ If we order the elements tively the d-basisBs(£2}) is constructed by combining ten-

1 t —
of Bs(€ (7)) into avector then we can write sorially B5(€;_,) and the bases;(P.) (fora = 0,1,--)

f _ f f f 80ne can easily see this by unrolling the recursion. This produces
Bs($y) = Bs((1) ® Bs(21(2) ®... @ Bs (4 (0)) an expression fob, (z) which is a product of(expr)-type expressions
4 (each one checking that a particular node in the two trees matches) and 1's
= ® Bs (Qg) (5) (these derive from the terminating conditi@[l(i):l - = 1). For example,

6(1111121)3) ((x1x2x5)) = 5(’1}1 = xl)X(S(’UQ = CEQ)X].X(S(’U;; = x3)><1.
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of characteristic functions over the primitive set. Thatis = Example 3 d-basis for variable-length binary stringsThe
. caseA = 2 for binary strings is particularly simple, as
£y _ t \®a in this case everything can be built from two characteristic
Bs(82a) g Bs(Pa) ® Bs(Qa-1) functions: §(1 = ;) = x; and§(0 = z;) = Z;, where
Z; = (e — x;) is the bit complement aof;, e here being un-

If one could unroll the recursion, one would see tBatQ2;)  derstood as the function (over the primitive set) that always
is a tensor sum with as many terms as there are possible prgturns 1. In this case, if we use the standard (“odometer’-
gram shapes. Each term in the sum is a tensor product cqike) order for binary strings, and we take= 2, we have
taining as factors thé&-bases for the subseg, of the primi-
tive set’ BY(9)
As pefore, we can also recover the linear case as a spe'C|aI: B5({0,1}) @ B5({0,1})#?
version of the tree case. For instance, for variable-length lin-

_(1 1 _(2 2 _(2 2
ear structures withP;| = |Py|, we can unroll the recursion = {l’g )7935 )} ® {xg )’l’g )} ® {»Té g a?é )}
in the definition ofd, (x), obtaining the following equivalent = (7! 3V} ¢ (z(P2(? 222P) Pz 222}

definition for the elements of thebasis: 1 D _(2)(2) _(2) (2) (2)_(2) (2) (2

§ - (a9, 0 P, oDl o)

dp(x) = (v = |x]) H(S('Ui = ;) where superscripts of the forf? have been used to repre-
i=1 sent length-class. O

where |v| and |z| are the number of primitives i and

z, respectively, and subscripts are used to index the prm{]-:__xample 4/ basis foryar?able-length Ii_negr structures with
tives from the root node (leftmost primitive) to the leaf nodet = 3 and ¢ = 2 This time thed-basis, in the odometer
(rightmost primitive). Likewise, we can unroll the recursive®Tdering, is given by

tensorial definition of35(Q2/,) obtaining:

Bs(£23)
Bo@a) = BilQ) = (@ ~ @i ~2/2, = VEl ~2),
= (10 Bs(P)) @ (Bs(P1)*? 2D 1)/,
®...P (Bd(pl))éad) ® Bs(Py) (x§2) - 1)(x§2) - 2)(g;g2) - 1)(xé2) —2)/4,
a —@? = 1)@ - 228 28 - 2)/2,
= (@(35(791))@) ® B;(Po) 2P - 102D @R 1) /4y
=0

where we should remember the subtle difference between the =

size (the number of primitiveg}| of a linear structure: and

its depthd(z), when the structure is seen as a tree, i.e., thiye have considered here thasis as being the natural ba-
d(z) = |z| — 1. sis for expanding any univariate function on the search space

As mentioned earlier, if we index the elements of the prim@": €quivalently, any vector. We have mentioned that also
itive set, in the linear case, the search space is isom&tlnterest, when one considers mutation and recombination,

phic to the space of variable-length sequences of integeR&e multivariate functions, which in their turn have a geomet-
(20, ...x4_1,2q) With z; € {0, -+ ,|P1|} for 0 < i < d and rical interpretation as tensors. We emphasise, without going
vy c (0, ] Po[}. In this case. we can explicitly representnto further detail, that thé-basis can also serve to build up

characteristic functions using polynomials. To illustrate thi?@ses for these higher order tensors too. For instance, for a

let us consider the special caBg = P; = {0,1,---A— 1}, (0, 2) tensor the natural basis would Bg(Q) ® Bs(2). For

andd = ¢ — 1. That is, the search space is the space dfetails the reader may consult [1].

variable-length strings of up to lengttbuilt from an alpha-

bet of cardinalityA. V. Building Block Basis

We can see in the following examples how our recursion for-

mula for trees, restricted to the arity-one case, yields thés we have seen, thiebasis for7g, is formed from the char-

same basis as the variable-lengtbasis written down ear- acteristic functions of single elements (singletonsjlofwe

lier. know that there is a benefit in defining a basis using char-

acteristic functions for subsets ©f other than singletons in
7B_as_es fo_r}'Q aresetsof functions. When we say that we create th_emthe case of fixed-length strings. TiBilding Block Basis

combining, via tensor sums and tensor products, other, Iower-dlmensmneBBB)’ which we will denote ang(Q), does exactly this.

bases we assume that the bases are represenfédiagensors. Alterna- . .

tively, one can treat them as sets, but in this case we must interpest  ON€ May therefore Wonqer if these bgneflts extend to the

Cartesian product ang as the set union. more general case of variable-length strings and trees.
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While in the previous sections we have proceeded from tHa the following, however, for simplicity of exposition we
particular (fixed- and variable-length strings) to the generalill ignore this aspect of the BBB-construction procedure.
(trees), in this section we will develop the theory directly foiLet us see how we can express more precisely the structure
the space of trees and we will then specialise to the simplef the characteristic functions in the BBB. For eack
cases to better exemplify it. we have a basis functiofi, € Bs(Q) recursively defined

In the BBB the subsets of the search spacesateemata as follows:

which are syntactically represented using either trees or sen-

tences from the following grammar: r ar(rt(v)) _
61)(I) = 5(56 € U) X H ﬂch(v,i) (Ch(I7Z))
B POPE| Py B E =
Po — por|poz| - [Pop | *0 where
Pr — pulpiz| - [pypy 1% , i,
drev) = dv=u1)
+ 6(v;x)><5 rt(v) = * ar(ri(e
Pamax 7 Pamaxl ‘pamax2 | e |p“max|7jamax‘ |*max ( ( t(T)))

Note that this is exactly the same syntax as for the eIemen\?I:l:]ICh returns 1 if either the root afand root ok are identi-

of the search space, but we have extended the lexicon Wﬁﬁll (non=) symhols, or if the root of is a+ symbol and the

the symbols #,” (for @ = 0,1,--- ,ama). These are in- root of z is a primitive with the same arity as thasymbol.

terpreted as “don’t care” symbols that stand for exactly on&he functions(z € v) returns 0 otherwise. So, an alternative
primitive of arity a. So, semantically a schent& = hyh,... Way of expressing it is the following

is the set of all programs that match its syntactic represen- .

tation (i.e., all programs with the same structurehass,... Swev) = > d(rt(x)=p)

and with exactly the same primitives &sh.... for all the pert(v)

non-"don’t care” symbols). An alternative interpretation for . ) )

the symbolst, is to consider them as the sets of all valid”here, with a minor notational stretch, we treat theym-
primitives of aritya, that is*, = P,. bo_ls_r_eturned byt(v) as sets of primitives and th_e_ordlnary
Although the number of possible schemata of up to dejpth Primitives returned byrt(v) as singletons (containing such
is much smaller than the number of elements of the powerd@tmitives). .

(the set of all subsets) @, this number is substantially Clearly, the functiong(x < v) depend only orrt(v) and
bigger thamy. So, clearly, a basis faFQ,d, could not contain rt(x), noton the actual structure and content of the rest of the
the characteristic functions of all possible schemata. Indeel@igesz andv. So, these are characteristic functions, defined
the BBB selects only one specific subset of schemata. In t@er the primitive seP, i.e., §(x € v) : P — {0,1}. They
simplest case, the set is constructed as follows: are particular in that they return 1 only on a whlg (when
rt(v) = *,) or on just singletons (whext(v) is an ordinary

« For each subset of a given ariy,, of the primitive set, primitive of arity a).

wherea = 0, - - - , amax, W€ choose a primitive,,, and

we replace it with the symbel,. Bt})/ts_ubstituting the expression é{zx € v) into 3,(x) we
obtain
« We generate all valid trees/sentences in this new lan-
guage. We call this sé,. Some trees ift}, will be Bo(x) = > 5(rt(z) =p)
ordinary elements of the search space (e.g., programs), pert(v)
but most will represent schemata (sets of elements). ar(rt(v))

X

H ﬁch(v,i) (Ch(l’, Z))

« B3(9,) is the set of characteristic functions for the ele- L
im

mentsH}, (interpreted as subsets Qf)).

There is complete freedom as to which primitive to reWhich reveals the relationship between the elements of the

place with a “don’t care” symbol in each,. So, there are §—ba3|s and the characteristic functions in the BBB(x)

[Io=e|P,| different BBBs that can be constructed in this'> the sum of characteristic funcFioﬁg(x) of all t.hew €
w::)z Furthermore, in the most general situation, one ¢ « Which “match” (or, more precisely, are contained) in the

apply a different renaming convention for each tree sha&&hema” I.€.
and, even, for each node in each shape class, obtaining, in all Pu(@) = Z Ou ()
cases a valid BBB. BBBs built in this more general way offer wev

advantages when writing the evolution equations for selectégain, a recursive formulation is important because it shows
recombinative EAs, in that it allows the “expansion” of thehow effectively the BBB,B3(2};), is constructed by com-
BBB around any particular search space element of interesining tensorially Bz(2%,_;) and the bases33(P,) (for
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a=20,1,--
set. Thatis

-) of characteristic functions over the primitive

GAmax

=D Ba(P

where the basi®z(P,) includes:

) ® Bg (1)

« The characteristic functions for the singletdns; } for
all valid elementg,; of P,, except the element @?,
that has been replaced by. These, of course, are the
same for bothBs(P,) andB;(P,).

« The characteristic function for the whole .

Let us assume, to start with, that the sBtsare ordered and
that the element of each, we have replaced with, is the
first element. If we then arrange the element8gfP,) and
B;(P.) in two column vectorsx§, x3 we have,

(6)

XG5 = AoXjy ,

where

oo =
OO = =
O = O =
_ o o -
S oo =

00 0O
is an invertiblea x a matrix with inverse

-1 -1
0
1

0

-1

1
0 0
0 0
0 1

o O O

1
0
0

0o 0 0 O 1

The structure of\, is simple. It is the identity matrix of size

Riccardo Poli and Christopher R. Stephens

For anyz,y € QY, if rt(z) precedest(y) (based on
the points above), thenprecedey.

For anyz,y € Q) such thatrt(z) = rt(y) and
ar(rt(z)) = 1. thenz precedey if rt(ch(z, 1)) pre-
cedest(ch(y,1)).

For anyz,y € € such thatrt(z) = rt(y) and
ar(rt(x)) = 2, thenz precedey if rt(ch(z,1)) pre-
cedesrt(ch(y, 1)) orrt(ch(z, 1)) = rt(ch(y, 1)) and
rt(ch(z,2)) precedest(ch(y, 2)).

We proceed similarly to compare trees with roots of ar-
ity a > 2.

For linear structures this produces the classical odometer or-
dering.
If we use forB; () the same order as f6t’;, we can now

place the elements d8;(©2) in a column vect0|x6 . Nat-
urally, we can do exactly the same thing ff, — the space
of schemata in the BBB, anB3((2},), obtaining a column

t
vectorxgd. We want to find the matrid}, that performs the
basis transformation
ng = Af]x?d

Because of the recursive nature of the search spaces we have

Gmax

—69x5§§>(x(s 1) o

Q

X5
and .
+ max Qt ®a
x5t = Pxse (XﬁM)
a=0

That is, the vector representations of BBB anbasis for a
space of a certain dimension are constructed by appropriately
combining the vector representations of the same bases but

a, in which the 0's in the first row have been turned into 1’sfor spaces of lower dimension. From this it follows that
Note that this is exactly the elementary matrix that needs to

tensor up to construct the BBB for fixed-length strings from

an alphabet with4 symbols [1]. Also, note that, if the ele-
ment of P, replaced withx , is not the first one but théh,

Amax

Qé_@/\ X5®

;.\ %
(M-5™)

the structure ofA, remains the same, except that now the 0'aind so the transformation matrix we are looking for is

in theith row are turned into 1's.
Any ¢-basis, includingBs(P,), is a basis (as it is trivially

provable), irrespective of the space it is built on. So, the in-

Amax

Ay =P Aa® (A )7
a=0

vertibility of A, guarantees that the set of characteristic func-

tions Bs(P,) is also a basis faFp, .

the recursion ending with = A,. Because of the invert-

If the primitive setsP, are ordered, we can then extend theifbility of the A,’s, and the properties of tensor products, this

order to the space of trees as follows:

« For primitives of the same arity,, we adopt the order
inP,.

« For primitives of different arity, primitives of lower arity
preceed primitives with higher arity, i.e., givenc P,
andy € Py witha # b,z > yif a > b.

is invertible, with inverse

Amax

e @) e () )

This tells us that the BBB is, indeed, a basis ﬂ{f and it
shows that the corresponding BBB transformation matrix is
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constructed from a handful of small transformation matriceshe BBB are hyperplanes. The BBB is
A

Example 5 The ¢- and Building Block bases for binary Bg = {04,01,02,04x, Os1,- .-, 022}
strings with/ = 1 and¢ = 3 For ¢ = 1, the §-basis — {51,5},5;,55{53’ 515%7,,., 5553}

of section IV is Bs(Q]) = {1, 1}. For binary strings ) 1)
Py = {0,1}. If we replace the symbol O with, then = (L= =2, (@7 -1, 1,
the BBB isBs(2]) = {e, 21}, wheree is a constant func- ~@? — 1)@ -2 -2)/2,..,
tion that always returns 1. Arranging the basis elements in (x?) _ 1)(9552) —1)}.
columnsxs = (Z1,21)7, x5 = (e,z1)" we have,
The coordinate transformation matrix that transforms be-
xp = MiXs (7)  tween they- and Building Block bases is

whereA; = ( (1) } ) and the subscript 1 refers to the Ay = ( A{ 0,} > (10)
. 0. A

length of the strings. 2

For ¢ = 3, if we replace the symbols O with's in P1 = \yhereo, is a3 x 9 matrix with all zero entries). is a9 x 3

Po = {0,1}, then the BBB is matrix with all zero entries and

fy
35(93) = {6,37373627332563733173313037961562,3313?2333}

A = (11)

O O =

1
1
0

—_ O =

Note that this consists of the characteristic functions of all
k-cubes, with0 < k£ < ¢ = 3, containing the string 111,
ranging from the entire 3-cube to the vertex itself. The use @nd
the standard tensor product ordering for the basis elements, s s s
mentioned earlier, becomes clear if one substitutedor Ay Al @A
the missing coordinates in each of the above monomials, i.e.,
writing the basis ageee,eexs, exqe,...}. The BBB for

¢ = 3 can be written as a tensor product

—
—

Bs(Qf) = Bs(2) @ Bs(0]) @ Bs(9]) =
= {67 xl} ® {6, x2} ® {e, 1'3}

(12)

The matrix A3 that effects the transition between the two
bases is the tensor cube of the matkixdefined above, i.e.,
Az =AP =N @A @A O

OO OO OO OO

S OO OO

[=NeoNeNeNeNal =l
SO O OO OO
OO OO = O
O OO OO
SO OO o
O R = OO0 M=
— O, OO OoO O

In the more general case ﬁlf, we can see thah, must

satisfy the recursion relation Example 7 Building Block basis for trees witP =

{z,y,+, —, x} and maximum deptth = 1 (two levels)With
these choices we have the following program space

Ap_1 Ap_
A€:A1®Aé—1:( %1 Aifi):A?e- (8)

The matrix elements of the BBB transformatiap, (A;);”, o = {x,y + +

are such thatA,),” = 1 if the vertex.J is contained in the O

k-cubel, and is zero otherwise, i.e. the strifgs a member X X X Yy

of the schemal. + + _ _
Example 6 Building Block basis fof2y , with £, = 2 P ’ P ’ P ’ P ’

and.A = 3 We choose arbitrarily the alleleas the allele to y X y |y X X Xy
be replaced by, then the schemata used in the BBB, in the
odometer ordering, are

{*,1,2,%%,%1,%2,1x, 11,12, 2%, 21, 22} , )

where* represents the three strinfs1 and2 and** the
nine string900, 01, 02, - - -, 22. Similarly, *1 represents the
three string®1, 11 and21. Geometrically the schemata in y X y y
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If we replace the primitives and+ with “don’t care” sym- represents the second child, then we can write:
bols* of appropriate arity, we obtain the schemata forming
the BBB B5(£2}), namely

Bgs($21)
t = { > 0@ =p)o@ = ”)}
Hl = *, Y, * ) * ) pef{z,y}
F */\y 1) (1) (1)
. . B B D Z d(zy” =p), 0z =—),0(x x)
? ) ’ ’ p€{+,*7><}
- =, X, X, ¥ { > o) = p).o(ay” “y”)}
o~ o~ o~ o~ pef{z,y}
y * y y * * * y
® {3 o) =p)aas) = ")
Pe{x:y}
X , X
PN PN

As there are two of them, the transformation matrix to go
from thed-basis to the BBB for the primitives of arity O is
Thanks to the recursive and tensorial structure of the search
space we can write

Ao

I
7N
O =
— =
N~

Bs() = Bg(Po) ® B(P2) © Bs(€2))%?

whereBg(Qf) = Bg(P,), and so while for the three primitives of arity 2 it is
Bg() = Bs(Po) ® Bs(P2) ® Bs(Po) © Bs(Po)

AQ = ( ) .
where

} So, the coordinate transformation matrix for the trees of up

S O =
O~ =
—_ o =

to depth 1 considered in this example is

Bg(Po) = { Y da=p).s@="y")

p€{z,y}

and Atl = A() @D A2 & Ao ® AO
B 11
o 0 1
Bﬁ%):{ > 5<x=p>,5<x:—>7é<m=x>} (o1 ®(1 1)@(1 1)
[)E{-‘r,—,x}
00 1 0 1 0 1
1 1
Note, that the elements of these two sets are univariate func- = ( 0 1 )
tions, hence the argument L1011
If 2\”) represents the primitive in the (only) node in trees of 11 1 010 1
depth 0,2{") represents the root node of trees of depth{l), ® 0L 0 el 454991 1
represents the first (left-most) child of the root node,aﬁ& 001 00 0 1
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Il
N
(an)
—

11 achieved using a few simple underlying matrices which, in
some sense, act as “building blocks” themselves for con-

111111111111 structing the seemingly complicated bases and transforma-
010101010101 tions that exist on the search spaces.
001100110011 Sometimes the mathematics of EAs, particularly trees, can
00010O0UO0OT1TG0TGO0TUO0O'1 seem overwhelmingly complicated. This is chiefly due to the
000011110000 difficulties of seeing the underlying mathematical structure.
00 00O0T1UO0T1U0TU0TUO0O0 Here, we have shown that the language of tensor sums and
D 000000110000 tensor products is a very elegant way in which the structure
00 0 00O0O0OT1U0TUO0TUO00 inherent in GAs and GP can emerge. It is known that the
00 00O0O0OOOOT1T1T11 BBB leads to great simplification of the dynamics of recom-
00 000O0UO0OO0OO0OT1T0 1 binative GAs with homologous recombination, leading to a
00 00O0O0UOO0OO0GO0 1 1 formulation where the creation of a string or schema via a
00000 O0UO0OO0O0O0TUO0 1 particular crossover mask is associated uniquely wisina
L 100000000000 o gle pair of conjugate schemata - Building Blocks. This is dis-
01 0 0 0 00O OU OO0 O0 0 O tinct to the case of strings, where, for a given mask, there are
P S S S S potentially many string combinations that may give rise to
00000 1 1 00 1 1 0 0 1 1 a particular target string. Interestingly, the dynamical equa-
PO R S N R PR tions written in the Building Block basis are identical to those
=| o o0 000 o010 1 0 0 0 0 previously found using coarse-graining techniques. Having
P R S PR found and analysed analogs of the BBB for variable-length
000 0000000 1 1 1 1 strings and trees, one may ask if these generalisations of the
P R RS BBB also lead to simplifications of the dynamics of homolo-
000 0 O0OOOTOTOTUO0OTUO0OO0 0 1 gous recombination for variable-length strings and trees. The

answer is yes and bears the key characteristic that for a given
analog of a crossover mask there is one and only one conju-
gate pair of schemata that give rise to an offspring string or
tree. This result will be examined in more detail in another
VI. Conclusions publication.

n thi inspired by th binative GA f Although we have here concentrated on éhe@nd Building
n this paper, inspired by the recombinative case lock bases, it is clear that the formalism we have devel-

flxe(_j-length strings, we showed that the_re are natural_gegbed is applicable tany coordinate transformation. It will
eralisations of the BBB to the case of variable-length SmngEe interesting to see what other interesting bases exist that
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