
Constrained Molecular Dynamics as a Search
and Optimization Tool

Riccardo Poli1 and Christopher R. Stephens2

1 Department of Computer Science, University of Essex, UK
2 Instituto de Ciencias Nucleares, UNAM, México

Abstract. In this paper we consider a new class of search and optimiza-
tion algorithms inspired by molecular dynamics simulations in physics.

1 Introduction

Search and optimization algorithms take inspiration from many different areas of
science. For instance, evolutionary algorithms generically take their inspiration
from biological systems [1]; simulated annealing from the physics of cooling [2];
Hopfield neural networks from the physics of spin glasses [3, 4]; swarm algorithms
from social interactions [5, 6]. In this paper we consider a class of algorithms
that take their inspiration from physics, in the sense that they use of a group of
interacting particles to perform the search, and will consider how intuition from
there can help in understanding how they work. Systems of this type have been
widely studied and simulated in the field of molecular dynamics.3

Our system is somehow similar to (and partly inspired by) particle swarm
optimization (PSO) [5]. Like our system, PSOs use groups of interacting par-
ticles. In PSOs such particles fly over the fitness landscape, recording the best
places seen so far by each particle and by the swarm as a whole. These points
are then used to generate pseudo-random forces (produced by springs) which
attract the particles towards such points. Although other types of interactions
have been recently introduced [9], generally no other information on the fitness
landscape is used by PSOs.

Our system differs from a PSO in many ways. Firstly, the motion of our
particles is constrained to be on the fitness landscape, that is our particles slide on
the fitness landscape rather than fly over it. Secondly, our simulation is physically
realistic, in the sense that a variety of forces may act on our particles such as
gravity, friction, centripedal acceleration, in addition to coupling forces such as
those generated by springs connecting the particles. As will be shown later some
of these forces depend on the topological characteristics of the landscape, such
as its gradient and curvatures, in the neighbourhood of each particle. Thirdly,
our method does not require the presence of explicit intelligence in the particles,
unlike PSOs where this is necessary for observing the motion of the particles and
3 The molecular dynamics method [7], introduced over 40 years ago to study the

interactions of hard spheres [8], has since been widely used in physics to understand
the behaviour of liquids, proteins, DNA, enzymatic reactions, etc.

deciding when and how to change the position of the attractors. Fourthly, the
method does not rely on the use of pseudo-random forces to perform the search
(although these are not excluded).

Given the close relation with molecular dynamics and the constrained nature
of the motion of our particles, we have decided to term the class of algorithms
considered here Constrained Molecular Dynamics (CMD).

The paper is organized as follows. In the next section we describe the basic
principles behind CMD. In Section 3 we illustrate the effects of different types of
forces on CMD using simple examples. We look at some implementation details
in Section 4. In Section 5 we study the behaviour of the algorithm on a small
set of benchmark problems. We give our conclusions in Section 6.

2 Constrained Molecular Dynamics

We restrict attention here to continuous search spaces. The search space we
denote by V ⊂ RN , where RN is an N -dimensional Euclidean space and equip it
with coordinates {x1, . . . , xN}. We also consider a fitness function f : RN → R+.
We can now embed V in RN+1, defining the fitness landscape via y = f(x),
where y is a height function above V and we use bold face to denote vectors
in V . In terms of the embedding coordinates, r = {x1, . . . , xN , xN+1}, where
y = xN+1, the fitness function surface takes the form g(x1, . . . , xN , xN+1) =
y − f(x1, . . . , xN) = 0. Using a notation that is standard in physics we will
denote derivatives of f by f,i1...im = ∂mf/∂xi1 . . . ∂xim , e.g. f,i = ∂f/∂xi, where
we use Roman indices for components of vectors associated with V . For indices
associated with V we will also use the Einstein summation convention that
repeated indices on different objects are considered to be summed over, e.g.
xixi =

∑
i xixi.

We now consider n particles of mass mα, α ∈ {1, . . . , n}, where α denotes the
particle under consideration4, moving on the surface y = f(x), with (embedding)
coordinates and velocities xα and vα respectively. In this case the motion of
each particle is constrained via an equation g(xα) = 0. Thus, we have (N +
1)n coordinates and N constraints, which leads to Nn independent degrees of
freedom.

The kinetic energy, Tα, of a particle α is

Tα =
mα

2
|vα|2 =

mα

2
(
ẋαi ẋ

α
i + ẋαN+1ẋ

α
N+1

)
(1)

where ẋαi = dxαi /dt and ẋαN+1 = f,iẋ
α
i . (Generally l dots above the symbol will

represent l time derivatives.) Then

Tα =
mα

2
gαij ẋ

α
i ẋ

α
j (2)

with gαij = δij + fα,i f
α
,j being interpretable as the metric tensor for the space on

which the particles are moving. The equations of motion for the particle α are

d

dt

(
∂Tα

∂ẋαi

)
− ∂Tα

∂xαi
= Fα · ∂rα

∂xαi
(3)

4 Greek indices will be used to specify the particle of interest.

where Fα is the force on the particle. Explicitly

ẍαi + Γαijkẋ
α
j ẋ

α
k = hαij

Fαk
mα

rαk,j (4)

where (hαij) is the inverse of (gαij) and

Γαijk =
fα,i f

α
,jk

(1 + fα,i f
α
,i)

(5)

The quantity Γαijk is determined solely by geometrical properties of the fit-
ness landscape and gives rise to the “generalized” force that arises due to the
constrained motion on the surface. Equation (3) gives a complete description of
the dynamics of particle α. The particle trajectories are solutions of (3). The
questions now are: can a set of particles like these perform a search, what type
of search do these particles carry out and how good are the particles at finding
optimal points in the landscape?

3 “Forces for Courses”

If one wishes to use the above physical system for search and optimization it
behooves one to think about what would be useful properties to have in order to
perform such tasks well. To a large extent this is associated with what type
of forces are introduced into the particle dynamics, as well as such obvious
characteristics as the number of particles.5 In the above we have not specified
the forces. There are, of course, a huge variety of possibilities. We may fruitfully
think of several broad classes however: i) no forces; ii) forces due to particle-
particle interactions; iii) forces due to interactions with an external field and iv)
friction/viscosity type forces. In the limit when there are no forces then equation
(4) becomes

ẍαi + Γαijkẋ
α
j ẋ

α
k = 0 (6)

Here the effective generalized force on the particle arises purely due to its
constrained motion. This generalized force depends on the geometry of the land-
scape via Γαijk, which from (5) can be seen to be zero when f,i = 0 or f,jk = 0.
A simple example of this is a particle constrained to move on a half circle (the
lower half) of radius R. In V , this is one dimensional motion, hence there is only
one degree of freedom. The constraint is y = −(R2−x2)

1
2 . In this case Γαijk only

has one component, Γα111 = x/(R2 − x2). The equation of motion is

ẍ+
(

x

R2 − x2

)
ẋ2 = 0 (7)

This can most easily be solved in a polar coordinate system (r, θ), where we
take θ to be the deviation from the direction −ey and ey is a unit vector in the
y direction. In this case (7) becomes
5 In the rest of the paper we will assume mα = 1 for all particles.

θ̈ = 0 (8)

whose solution is θ(t) = a+ bt. Thus, in this coordinate system, naturally given
the geometry, the particle moves freely as there is no generalized force in the
tangential direction. The particle position in terms of the landscape height is
y(t) = −R cos(a+bt). In terms of “optimization”, if we are seeking the minimum
of the function then obviously if the particle starts with zero velocity we have the
trivial situation where the particle does not move. However, moving with angular
frequency ω clockwise and starting at y = 0 then y(t) = −R cos(π/2− ωt). The
particle finds the optimum when cos(π/2 − ωt) = 1, i.e. t = π/2ω. So in order
to find the optimum the particle needs a non-zero initial velocity.

Considering further this simple one-dimensional example we can now intro-
duce the idea of an external force field. A canonical example of that would be
gravity, of which the simplest case is that of a constant gravitational field. In
the case of particle motion on a surface it is natural to take the gravitational
acceleration, g, to be in the y direction. In this case Fαi = −gδαi(N+1), i.e. the

force is “downwards”. Once again, taking the case y = −(R2 − x2)
1
2 , one finds

ẍ+
(

x

R2 − x2

)
ẋ2 =

gx

R
(R2 − x2)

1
2 (9)

Passing to a polar coordinate system we have

θ̈ = −g sin θ (10)

Intuition can be simply gleaned here by considering the case θ � 1 so that
sin θ ≈ θ. In this case θ(t) = a cos(g1/2t) + b sin(g1/2t). Starting the particle at
θ(0) = a (a > 0) with inital angular speed zero the particle finds the optimum
θ = 0 at t = π/2g1/2, which is independent of the initial starting point. Thus,
adding a constant external force that pulls the particles in the required direction,
i.e. to smaller values of the height function, implies that the particle can find the
global optimum irrespective of the particle’s initial position. Thus, in terms of
optimization the advantage of gravity is that it provides a bias for the search to
go in the right direction. One might be tempted to think of it as providing a hill
climbing type behaviour. This would be wrong however, as (some) local optima
can be avoided. This can be simply understood in the one-dimensional case by
realizing that dropped from a given height with zero velocity the particle will be
able to surmount any local maxima that are lower than its starting point as the
particle’s accumulated kinetic energy is sufficient to take it over the barrier.

In order to consider particle-particle interactions we must go beyond the
one particle case, the simplest being that of two particles. An interesting and
illustrative example of interparticle interactions would be to connect the particles
by attractive spring type forces, where generically the force on particle α would
be Fα = −

∑
β kdαβ , where k is a spring constant which in principle could be

different for different particles. The sum over β is a sum over those particles
β connected to the particle α. This could be all the particles or just nearest
neighbors or a random subset, to name but a few. Finally, dαβ is the “signed”

distance between α and β, where dαβ = −dβα. This could be the Euclidean
distance in the embedding space, the distance in V or the distance as measured
by a geodesic curve between the two particles (i.e. the shortest distance on the
landscape). In the case of our simple example of a particle constrained to move
on a half circle the two equations of motion for the two particles are

ẍα +

(
xα

R2 − (xα)2

)
(ẋα)2 = −kdαβ (11)

where α = 1, 2. In the case where the spring force is associated with the dis-
tance between the particles as measured along the curve then passing to polar
coordinates (r1, θ1) and (r2, θ2) and introducing the center of mass and relative
coordinates Θ = (θ1 + θ2)/2 and θr = (θ1 − θ2)/2 one finds

Θ̈ = 0 θ̈r = −kθr (12)

In this case the center of mass moves with uniform angular speed Θ = a+ bt
while the relative angle between the two particles is given by θr = c cos(k1/2t) +
d sin(k1/2t). A simple example of how such interparticle forces can help in the
search process can be to consider the case where both particles start on either
side of the optimum at θ = 0, either at rest or with velocities that take them away
from the optimum. In this case the attractive force of the spring pulls them in
the direction of the optimum. In the explicit example where the particles start
with initial positions and velocities θ1 = a, θ2 = −a, θ̇1 = θ̇2 = 0 then the
particles encounter the optimum at t = π/2k1/2.

Finally, in discussing the individual forces in the context of simple examples
we may consider the case of friction. Taking the particle on the half circle the
equation of motion is

θ̈ = −ηθ̇ (13)

which has solution θ(t) = (bη−a+a exp(−t))/η, where θ̇(0) = −a and θ(0) = b,
i.e. we start the particle from the right of the optimum and travelling toward it.
In the limit of large t the particle will have reached the optimum if ηb < a. Thus,
the stronger the friction force the greater the initial velocity in the direction of
the optimum must be in order to reach it. It may be though naively then that
friction is a bad idea. However, say for example, b < 0 then the presence of
friction prevents the particle from moving further away from the optimum than
it would otherwise do. In this way, in the presence of other forces, friction can
have an important role to play in “relaxing” the particle into a good position
once an interesting region has been found in the landscape. Increasing the friction
then has the character of reducing the explorative component in the search and
is somewhat analogous to reducing the temperature in the case of simulated
annealing.

Now, in the above we are considering a simple example of a unimodal function
in one dimension. We have in mind using the particles for search and optimiza-
tion on non-trivial multi-dimensional landscapes. So what can we deduce from
the above in the more general context? Firstly, consider free particle motion.

This is somewhat analogous to random search. There is no “selection” in the
sense that there is no systematic tendency to seek fitter (lower) points in the
landscape. In this case the particle’s trajectory is completely and solely governed
by the geometry of the landscape. However, there is a tendency to spend less
time in regions of the landscape of high curvature and more time in regions of
low curvature. Intuitively this is because the “tighter the bend the quicker the
particle has to travel to keep on the track”. In this sense the particle motion can
be thought of as a potential diagnostic for the size of the basin of attraction of
an optimum.

Other type of forces can be included in this framework. For example, particles
could be charged as has been proposed for PSOs [9]. In our simulations we have
used elasticity (partially unelastic bounces) also to guarantee that the particles
would not leave the search area defined by the user.

4 Discretization of the algorithm

Although Equation (3) gives a complete description of the dynamics of each
particle, its explicit solution is generally very hard if not impossible for a generic
landscape and a generic set of forces. So, often numerical integration is the
only way to determine the trajectory of each particle and, therefore, to run a
CMD algorithm. In our implementation we have used the traditional first-order
forward difference approximation for derivatives, e.g. we have approximated a
continuous velocity v(t) as

v(t) =
x(t+∆)− x(t)

∆
,

where ∆ is the integration time step.
So, once the initial velocity and position of each particle is given, we update

each component of velocity and position of each particle, time step after time
step, by using the following recursion:

x(t+ 1) = x(t) +∆ · v(t) (14)
v(t+ 1) = v(t) +∆ · a(t) (15)

where a(t) is the corresponding component of the acceleration. This is calcu-
lated by appropriately adding all the forces (gravity, friction, etc.) acting on the
particle. Some such forces depend on the first or second order partial derivatives
of the fitness function. These can either be directly computed by differentiation
of the fitness functions or be approximated numerically. For simplicity in our
experiments we calculated derivatives using central differences. For example, we
used the approximation

f,i ≈
f(x1, . . . , xi +∆, . . . xn)− f(x1, . . . , xi −∆, . . . xn)

2∆
.

Naturally, these extra evaluations of the fitness function need to be considered
when calculating the computation load of the algorithm.

5 Results

We tested the algorithm on three standard benchmark problems, the De Jong’s
functions F1 and F2, and the Rastrigin’s function, of increasing dimensionality
N and with a varying number of masses n. The method we propose is new, and
still needs to be understood in depth. So, the purpose of these tests was not to
try and beat other well established algorithms, but rather to understand more
about what kind of forces are beneficial for what kind of landscapes and why.

The function F1 has the following form:

f(x) =
N∑
i=1

x2
i .

That is this function represents a symmetric (hyper-)paraboloid, with no local
optima and a global optimum in x = (0, . . . , 0) where f(x) = 0.

The function F2 (also known as Rosenbrook’s function) has the following
form:6

f(x) =
N−1∑
i=1

((xi+1 − x2
i)

2 + 0.01(1− xi)2).

This function has no local optima and a global optimum in x = (1, . . . , 1) where
f(x) = 0. The function is much harder than F1 since the optimum is effectively
at the end of a long, very narrow valley.

Rastrigin’s function has the following form:

f(x) = 10N +
N∑
i=1

(x2
i − 10 cos(2πxi))

This function has many local optima and one global optimum in x = (0, . . . , 0)
where f(x) = 0.

In the simulations reported here, we initialized all the particles in random
positions within the hypercube [−5.12,+5.12]N , all with zero velocities.7

For each of the three fitness functions described above we tested a number
of different configurations:

– different numbers of particles (n = 1, n = 2 and n = 10),
– different dimensionality of the search space (N = 1, N = 2 and N = 3),
– different configurations for the springs (absence, particles connected so as to

form a ring, particles fully connected: s=no, s=ring and s=full, respectively,
in Tables 1–3),

– absence or presence of gravity (g=no and g=yes, respectively, in Table 1–3),
– absence or presence of friction (f=no and f=yes, respectively, in Tables 1–3).

6 For simulation convenience we rescaled the original function by dividing it by 100.
7 Note, however, that providing the particles with non-zero initial velocities can have

benefits since it energises the system beyond what’s provided by the gravitational
and elastic potential energies.

For each setting we performed 30 independent experiments. Each experiment
involved the integration of the system of equations in Equation (3) for 5000 time
steps with time step ∆ = 0.01. Spring stiffness was 0.03, the friction coefficient
was 1, gravity acceleration was 0.1, the elasticity coefficient for bounces against
the boundaries -5.12 or +5.12 was 0.8. In each run we measured the average and
standard deviation of the best fitness value found during the run, as well as the
average and standard deviation of the distance between the point where the best
value was achieved and the global optimum.

Tables 1-3 report the results of the simulations. Each entry includes four
numbers. The first (in italics) represents the average of the best fitness seen in
each of the 30 independent runs. The second (in a smaller font and in italics)
represent the standard deviation of the best fitness. The third value represents
the average distance from the global optimum, while the fourth (in a smaller
font) represents the standard deviation for such a distance.

For F1 (see Table 1) we note that, as expected, increasing the number of
particles performing the search improves performance. This is true for all our
experimental results (i.e. also for Tables 2 and 3). We can also see that, alone,
the presence of gravity is sufficient to guarantee near perfect results. This had
to be expected since a particle with no initial velocity is bound to pass through
the origin in this fitness function. Springs appear not to be too beneficial for the
search, particularly in the case of only two particles where the system tends to
oscillate in useless directions, unless gravity brings the system (and its oscilla-
tions) in the right area. Friction generally helps the search settle in the global
optimum.

In Table 2 we report the results obtained with the much harder De Jong’s
function 2. Generally the comments above apply to this function too, although,
due to the long narrow valley leading to the global optimum, the benefits of
friction are not as clear in this case. Also, for this function we observe a signif-
icant variance in the results for the case N = 3. This is due to the fact that,
depending on the initial conditions, runs either succeed in finding (and then
following until the simulation ends) the bottom of the valley or they oscillate
between the “walls” of the valley failing to ever get good fitness values. With
enough particles the effect disappears, because there always appear to be some
which are well placed to find the valley. For this problem the presence of springs
benefits the system when only two particles are present (particularly if gravity
is also present). This is because the interaction between the particles help align
the trajectories of the particles in the direction of the valley.

The results for the Rastrigin function (Table 3) appear to be the worst of the
crop. This is really due to the exceptional multimodality of this function (e.g. for
N = 3 the function presents around 1000 local optima in the interval of interest).
In all cases gravity appears to help bring the system towards the global optimum
more than anything else, although the presence of fully connected springs seems
to have potential (because the particles can then pull each other out of local
optima, at least in some cases). Judging from the rapid improvements produced
by increasing the number of particles from 2 to 10 in all cases, we suspect that
further significant improvements could be obtained by using a larger number of
particles. Future research will need to clarify this.

Table 1. Results on De Jong fitness function 1. The cases where no motion could
happen are marked as N/A.

N=1 N=2 N=3
Setup n=1 n=2 n=10 n=1 n=2 n=10 n=1 n=2 n=10

s=no
g=yes
f=no

0.0000
0.0000

0.0017
0.0012

0.0000
0.0000

0.0010
0.0009

0.0000
0.0000

0.0001
0.0002

0.0000
0.0000

0.0038
0.0029

0.0000
0.0000

0.0023
0.0023

0.0000
0.0000

0.0005
0.0005

0.0000
0.0000

0.0047
0.0032

0.0000
0.0000

0.0031
0.0025

0.0000
0.0000

0.0005
0.0005

s=no
g=yes
f=yes

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

0.0001
0.0002

0.0000
0.0000

0.0000
0.0001

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

0.0008
0.0014

0.0000
0.0000

0.0002
0.0008

0.0000
0.0000

0.0000
0.0000

s=ring
g=no
f=no

N/A

0.6463
1.5581

0.3225
0.7364

0.0000
0.0000

0.0001
0.0002

N/A

0.8151
3.0105

0.3449
0.8343

0.0014
0.0022

0.0294
0.0234

N/A

0.8539
4.1464

0.3821
0.8414

0.0074
0.0090

0.0736
0.0441

s=ring
g=no
f=yes

N/A

0.8501
1.8996

0.2360
0.6492

0.0000
0.0000

0.0001
0.0002

N/A

1.0403
3.6969

0.4165
0.9311

0.0039
0.0099

0.0427
0.0460

N/A

1.0241
4.2864

0.4726
0.8948

0.0076
0.0117

0.0724
0.0485

s=ring
g=yes
f=no

0.0000
0.0000

0.0018
0.0013

0.0000
0.0000

0.0013
0.0016

0.0000
0.0000

0.0001
0.0002

0.0000
0.0000

0.0038
0.0029

0.0158
0.0220

0.0951
0.0820

0.0002
0.0003

0.0099
0.0080

0.0000
0.0000

0.0047
0.0032

0.0346
0.0489

0.1513
0.1083

0.0012
0.0013

0.0303
0.0172

s=ring
g=yes
f=yes

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

0.0001
0.0002

0.0010
0.0045

0.0120
0.0286

0.0000
0.0000

0.0003
0.0004

0.0000
0.0000

0.0008
0.0014

0.0028
0.0067

0.0309
0.0433

0.0000
0.0000

0.0017
0.0018

s=full
g=no
f=no

N/A

0.8058
1.8267

0.3661
0.8196

0.0000
0.0000

0.0002
0.0002

N/A

1.9934
5.0823

0.6871
1.2334

0.0064
0.0280

0.0392
0.0698

N/A

1.2609
4.5858

0.5760
0.9639

0.0073
0.0132

0.0687
0.0512

s=full
g=no
f=yes

N/A

1.1956
1.9363

0.4302
0.6727

0.0000
0.0000

0.0002
0.0002

N/A

2.8333
5.6838

0.8495
1.2733

0.0505
0.2465

0.0876
0.2070

N/A

1.5146
4.7949

0.6795
1.0261

0.0123
0.0172

0.0892
0.0662

s=full
g=yes
f=no

0.0000
0.0000

0.0018
0.0013

0.0000
0.0000

0.0008
0.0008

0.0000
0.0000

0.0001
0.0002

0.0000
0.0000

0.0038
0.0029

0.0052
0.0090

0.0522
0.0496

0.0000
0.0001

0.0049
0.0039

0.0000
0.0000

0.0047
0.0032

0.0174
0.0210

0.1065
0.0777

0.0002
0.0003

0.0132
0.0078

s=full
g=yes
f=yes

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

0.0001
0.0002

0.0004
0.0021

0.0054
0.0194

0.0000
0.0000

0.0002
0.0002

0.0000
0.0000

0.0008
0.0014

0.0009
0.0032

0.0132
0.0266

0.0000
0.0000

0.0008
0.0005

Table 2. Results on De Jong fitness function 2. This function is not defined for N = 1.

N=1 N=2 N=3
Setup n=1 n=2 n=10 n=1 n=2 n=10 n=1 n=2 n=10

s=no
g=yes
f=no

N/A N/A N/A

0.0083
0.0063

1.5725
0.9038

0.0057
0.0057

1.2344
0.8570

0.0008
0.0012

0.5024
0.4947

98.6604
168.2136

3.2142
1.8425

24.5817
70.6019

2.3850
1.1993

0.0540
0.1733

1.8800
0.8406

s=no
g=yes
f=yes

N/A N/A N/A

0.0085
0.0063

1.8870
1.1955

0.0062
0.0061

1.4017
1.0719

0.0011
0.0017

0.4768
0.3980

98.6783
168.2172

3.2300
1.8333

24.5529
70.6264

2.4520
1.1514

0.0281
0.0406

1.7980
0.7935

s=ring
g=no
f=no

N/A N/A N/A N/A

0.0116
0.0101

1.4533
0.8073

0.0119
0.0234

1.3980
1.2000

N/A

2.0799
9.4327

2.0027
1.0316

0.1160
0.2155

1.9016
0.9785

s=ring
g=no
f=yes

N/A N/A N/A N/A

0.0093
0.0079

1.4369
0.8969

0.0102
0.0186

1.4064
1.1284

N/A

2.0842
9.4467

1.9913
1.0333

0.0884
0.1197

1.9155
0.9686

s=ring
g=yes
f=no

N/A N/A N/A

0.0083
0.0063

1.5725
0.9038

0.0091
0.0091

1.3385
0.8018

0.0026
0.0039

0.7636
0.6339

98.6604
168.2136

3.2142
1.8425

0.2926
0.7559

1.8632
0.6457

0.0285
0.0215

1.0944
0.5917

s=ring
g=yes
f=yes

N/A N/A N/A

0.0085
0.0063

1.8870
1.1955

0.0096
0.0102

1.2516
0.7705

0.0056
0.0140

0.7584
0.6502

98.6783
168.2172

3.2300
1.8333

0.2768
0.7184

1.8642
0.6534

0.0567
0.0711

1.7421
0.9999

s=full
g=no
f=no

N/A N/A N/A N/A

1.4072
6.6479

1.5476
1.0641

0.0179
0.0279

1.5874
1.3333

N/A

2.2154
10.6180

2.0587
1.0573

0.1057
0.3041

1.5411
0.6969

s=full
g=no
f=yes

N/A N/A N/A N/A

1.4429
6.7059

1.5831
1.0120

0.0146
0.0233

1.7296
1.1779

N/A

2.1228
10.6202

2.0383
1.0003

0.1086
0.2967

1.5132
0.7283

s=full
g=yes
f=no

N/A N/A N/A

0.0083
0.0063

1.5725
0.9038

0.0072
0.0085

1.1053
0.6276

0.0020
0.0023

0.7714
0.6215

98.6604
168.2136

3.2142
1.8425

0.2107
0.4660

1.7438
0.7965

0.0345
0.0510

1.5821
0.6131

s=full
g=yes
f=yes

N/A N/A N/A

0.0085
0.0063

1.8870
1.1955

0.0068
0.0073

1.1092
0.6805

0.0016
0.0023

0.5870
0.4682

98.6783
168.2172

3.2300
1.8333

0.2513
0.5929

1.9117
0.8000

0.0346
0.0524

1.5445
0.6408

Table 3. Results on Rastrigin’s function.

N=1 N=2 N=3
Setup n=1 n=2 n=10 n=1 n=2 n=10 n=1 n=2 n=10

s=no
g=yes
f=no

0.0332
0.0469

0.3331
0.4685

0.0266
0.0440

0.2669
0.4398

0.0066
0.0248

0.0668
0.2481

1.0396
0.5970

2.8790
0.9066

0.7361
0.5427

2.2777
1.0634

0.3201
0.2693

1.4607
0.7793

1.9737
0.9226

4.0112
1.1571

1.5414
0.7397

3.5864
0.9498

0.8132
0.4943

2.6426
0.8851

s=no
g=yes
f=yes

0.3980
0.0000

1.9899
0.0000

0.2919
0.1518

1.5919
0.6079

0.0929
0.1283

0.6633
0.6957

1.1536
0.6872

3.1834
1.0348

0.7825
0.5866

2.4916
1.1448

0.3307
0.2901

1.5797
0.7683

2.0360
1.0148

4.3004
1.1970

1.5813
0.8024

3.7682
1.0576

0.7773
0.4447

2.4908
0.8670

s=ring
g=no
f=no

N/A

0.3368
0.6520

0.6223
1.0560

0.0000
0.0000

0.0003
0.0003

N/A

0.9024
0.6795

2.2698
1.1799

0.5437
0.4631

1.8193
0.9733

N/A

2.1433
0.9289

3.5220
1.1853

1.2487
0.5519

3.0507
0.9802

s=ring
g=no
f=yes

N/A

0.4286
0.6698

0.8941
1.1796

0.0000
0.0000

0.0003
0.0004

N/A

1.1336
0.8059

2.5529
1.3239

0.4475
0.3490

1.6278
0.7376

N/A

2.0803
1.0903

3.3908
1.2126

1.1415
0.5226

2.9809
0.9300

s=ring
g=yes
f=no

0.0332
0.0469

0.3331
0.4685

0.1029
0.2430

0.4322
0.9147

0.0000
0.0000

0.0005
0.0006

1.0396
0.5970

2.8790
0.9066

1.1870
0.7936

2.7213
1.2532

0.3327
0.2492

1.5775
0.8007

1.9737
0.9226

4.0112
1.1571

1.9231
0.9096

3.5778
1.2404

0.8747
0.4806

2.6596
0.8376

s=ring
g=yes
f=yes

0.3980
0.0000

1.9899
0.0000

0.1928
0.3036

0.8012
1.0773

0.0000
0.0000

0.0003
0.0004

1.1536
0.6872

3.1834
1.0348

0.9684
0.6065

2.4871
1.1120

0.2835
0.2392

1.4193
0.8035

2.0360
1.0148

4.3004
1.1970

1.8926
0.8526

3.6725
1.1526

0.8497
0.5028

2.6898
0.9011

s=full
g=no
f=no

N/A

0.3913
0.6669

0.6997
1.1208

0.0000
0.0000

0.0002
0.0002

N/A

1.1838
0.9084

2.6754
1.3083

0.4292
0.2601

1.6599
0.8089

N/A

2.1011
1.0658

3.7625
1.1425

1.2331
0.5655

2.9868
0.9181

s=full
g=no
f=yes

N/A

0.4286
0.6698

0.8943
1.1796

0.0000
0.0000

0.0003
0.0004

N/A

1.1066
0.8272

2.5687
1.3165

0.4671
0.3094

1.8347
0.8264

N/A

1.8753
1.0624

3.6730
1.1208

1.1929
0.5441

2.8970
0.8626

s=full
g=yes
f=no

0.0332
0.0469

0.3331
0.4685

0.0579
0.1306

0.3031
0.6409

0.0000
0.0000

0.0005
0.0007

1.0396
0.5970

2.8790
0.9066

0.8969
0.7295

2.3166
1.2982

0.3358
0.2609

1.5941
0.7446

1.9737
0.9226

4.0112
1.1571

1.5931
0.7710

3.5718
1.0327

0.8681
0.4602

2.7054
0.8320

s=full
g=yes
f=yes

0.3980
0.0000

1.9899
0.0000

0.1228
0.1698

0.6973
0.8572

0.0166
0.0371

0.1661
0.3707

1.1536
0.6872

3.1834
1.0348

0.8517
0.7193

2.4117
1.2834

0.3373
0.2761

1.6053
0.7694

2.0360
1.0148

4.3004
1.1970

1.4464
0.7426

3.2468
1.1666

0.7913
0.4474

2.5512
0.8517

6 Conclusions

In this paper we have presented a new search and optimization method inspired
by nature: the Constrained Molecular Dynamics method. This method uses the
physics of masses and forces to guide the exploration of fitness landscapes. In this
paper we have started exploring this idea, using three forces: gravity, interaction
via springs, and friction. Gravity provides the ability to seek minima. Springs
provide exploration. Friction slows down the search and focuses it.

In the paper we have described experimental results for the De Jong’s func-
tions 1 and 2 and for the Rastrigin’s function. The results appear to be very
encouraging and make us believe that a lot more can come from this method in
future research.

Acknowledgements

CRS acknowledges support from DGAPA project ES100201 and Conacyt project
41022-E. RP would like to thank the members of the NEC (Natural and Evolu-
tionary Computation) group for helpful comments and discussion.

References

1. J. Holland. Adaptation in Natural and Artificial Systems. University of Michigan
Press, Ann Arbor, USA, 1975.

2. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing.
Science, Number 4598, 13 May 1983, 220, 4598:671–680, 1983.

3. J. J. Hopfield. Neural networks and physical systems with emergent collective com-
putational abilities. Proceedings of the National Academy of Sciences, 79:2554–2558,
1982.

4. J. J. Hopfield and D. W. Tank. Neural computation of decisions in optimization
problems. Biological Cybernetics, 52:141–152, 1985.

5. James Kennedy and Russell C. Eberhart. Swarm Intelligence. Morgan Kaufmann
Publishers, San Francisco, California, 2001.

6. Eric Bonabeau, Marco Dorigo, and Guy Theraulaz. Swarm intelligence : from nat-
ural to artificial systems. Oxford University Press, New York, 1999.

7. D. C. Rapaport. The Art of Molecular Dynamics Simulation. Cambridge University
Press, 1997.

8. B. J. Alder and T. E. Wainwright. Phase transition for a hard sphere system.
Journal of Chemical Physics, 27:1208–1209, 1957.

9. T. M. Blackwell and P. J. Bentley. Dynamic search with charged swarms. In
W. B. Langdon et al., editor, GECCO 2002: Proceedings of the Genetic and Evolu-
tionary Computation Conference, pages 19–26, New York, 9-13 July 2002. Morgan
Kaufmann Publishers.

