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Abstract

This paper is the second part of a two-part paper which introduces a general schema
theory for genetic programming (GP) with subtree-swapping crossover (Part I (Poli
and McPhee, 2003)). Like other recent GP schema theory results, the theory gives an
exact formulation (rather than a lower bound) for the expected number of instances
of a schema at the next generation. The theory is based on a Cartesian node reference
system, introduced in Part I, and on the notion of a variable-arity hyperschema, intro-
duced here, which generalises previous definitions of a schema. The theory includes
two main theorems describing the propagation of GP schemata: a microscopic schema
theorem and a macroscopic one. The microscopic version is applicable to crossover
operators which replace a subtree in one parent with a subtree from the other par-
ent to produce the offspring. Therefore, this theorem is applicable to Koza’s GP
crossover with and without uniform selection of the crossover points, as well as one-
point crossover, size-fair crossover, strongly-typed GP crossover, context-preserving
crossover and many others. The macroscopic version is applicable to crossover op-
erators in which the probability of selecting any two crossover points in the parents
depends only on the parents’ size and shape. In the paper we provide examples, we
show how the theory can be specialised to specific crossover operators and we illus-
trate how it can be used to derive other general results. These include an exact defi-
nition of effective fitness and a size-evolution equation for GP with subtree-swapping
Crossover.

Keywords
Genetic Programming, Schema Theory, Standard Crossover

1 Introduction

Genetic algorithms (GAs), genetic programming (GP) and many other evolutionary
algorithms explore a search space by storing and using at each time step (a generation)
a set of points from that search space (the current population) which are evaluated and
then used to produce new points (the next generation). Typically this process is iterated
for a number of generations.

If we could visualise the search space, we would often find that initially the pop-
ulation looks a bit like a cloud of randomly scattered points, but that, generation after
generation, this cloud changes shape and moves in the search space following a tra-
jectory of some sort. In different runs the population cloud would probably follow
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slightly (or even widely) different trajectories and would have different shapes, but
some regularities in the algorithm’s search behaviour would be observable. Different
combinations of parameter settings, operators, fitness functions, representations and
algorithms would probably present different regularities in their population dynamics.
It would then be possible to visually compare behaviours and see which combination
is most effective at solving a particular problem or class of problems.

Unfortunately, it is normally impossible to exactly visualise the search space (and
the population dynamics) due to its high dimensionality (although there are techniques
which can reduce the dimensionality for the purpose of approximate visualisation, e.g.
see (Pohlheim, 1999)). So, it is not possible to just use our perceptual abilities to charac-
terise, study, predict and compare the behaviour of different evolutionary algorithms.
Also, even if this was possible, only qualitative or semi-quantitative information could
be extracted via visual inspection. This is why in order to study and understand the
behaviour of different evolutionary algorithms in precise terms we need to define and
then study mathematical models of evolutionary search.

Schema theories are among the oldest, and probably the most well-known, classes
of models of evolutionary algorithms. Schema theories provide information about the
properties of subsets of the population (called schemata) at the next generation in terms
of quantities measured at the current generation, without having to actually run the
algorithm. Other models of evolutionary algorithms exist, like for example models
based on Markov chain theory (e.g. (Nix and Vose, 1992; Davis and Principe, 1993)) or
on statistical mechanics (e.g. (Priigel-Bennett and Shapiro, 1994)). However, with the
exception of Altenberg’s approach (Altenberg, 1994) (summarised in Section 2.1), these
are not currently applicable to genetic programming with subtree crossover.!

Like in other models, the quantities used in schema equations can be of two kinds:
microscopic quantities, when they refer to properties of single strings/programs, or more
macroscopic quantities, when they refer to properties (such as average fitness, cardinality,
etc.) of larger sets of individuals. Some schema theories use only macroscopic quanti-
ties. We will call them macroscopic schema theories. Others are not fully macroscopic in
that they express macroscopic properties of schemata using only microscopic quanti-
ties, such as the fitnesses of all the individuals in the population, or a mixture of micro-
scopic and macroscopic quantities. We will refer to these as microscopic schema theories
to differentiate them from the purely macroscopic ones. The distinction is important
because usually macroscopic schema equations are simpler and easier to analyse than
microscopic ones. However, in the past, schema equations, like the equations of other
models, have tended to be only approximate or worst-case-scenario equations, and this
has limited their predictive power. So, in the following we will characterise different
schema-based models of GAs and GP on the basis of three properties: a) whether the
models are approximate or exact, b) the level of coarse graining of the predicted quan-
tities (i.e. the left-hand side of a model’s equations), and c) the level of coarse graining
of the quantities used to make the prediction (i.e. the variables on the right-hand side
of a model’s equations). Figure 1 shows the space of possible models with a reference
system defined by the three quantities mentioned above (the entities in this reference
system will be described in the following paragraphs).

The theory of schemata in genetic programming has had a difficult child-

IThe only Markov chain model available for genetic programming and variable-length genetic algorithms
to date is the one recently developed in (Poli et al., 2001), which, however, is only applicable to homologous
crossover operators. We hope that by following a similar approach the theory developed in this paper will
eventually make it possible to construct a usable Markov chain model of GP with subtree crossover.
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Figure 1: Space of GA/GP schema-based models.

hood. Some excellent early efforts led to different worst-case-scenario schema theo-
rems (Koza, 1992; Altenberg, 1994; O'Reilly and Oppacher, 1995; Whigham, 1995; Poli
and Langdon, 1997b; Rosca, 1997). In Figure 1, each of these is represented as a collec-
tion of small dashed circles.? Only very recently have the first exact schema theories
become available (Poli, 2000b; Poli, 2000a; Poli, 2001a) which give exact formulations
(rather than lower bounds) for the expected number of instances of a schema at the next
generation.® These exact theories are applicable to GP with one-point crossover (Poli
and Langdon, 1997a; Poli and Langdon, 1997b; Poli and Langdon, 1998). They oc-
cupy the horizontal plane in Figure 1 and so they have high predictive and explanatory
powers. Since one-point crossover is not widely used,* however, this work has had a
limited impact. The work in (Poli, 2000a; Poli, 2001a) has remained the only proposal
of an exact macroscopic schema theory for GP with any GP crossover operator until the
recent extension of that work to the class of homologous crossovers (Poli and McPhee,
2001c) and the work described in this paper. As a result the space of models for GP
with mainstream operators such as standard crossover has remained almost empty for
many years.

This paper helps fill this theoretical gap by presenting an exact general schema
theory for genetic programming which is applicable to standard crossover as well as

2Starting from the back of the reference system, the circles represent schema equations for schemata of
increasing order. Because in those equations the coarse graining (schema order) of the quantity on the Lh.s.
is the same as that of the quantity on the r.h.s., the circles lie on a vertical plane which includes the origin and
the vertical axis.

3To be precise, one of the models proposed in (Altenberg, 1994) is an exact model. However, as discussed
in Section 2.1.1, this is a microscopic model of the propagation of program components (subtrees) in GP with
standard crossover, rather than a theorem about schemata as sets. This model allows one to compute the
exact proportion of subtrees of a given type in an infinite population in the next generation given information
about the programs in the current generation. In Figure 1, Altenberg’s model is within the elongated ellipsoid
at the back of the reference system.

“In fact, we are not yet aware of any public domain GP implementations offering one-point crossover as
an option.
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many other crossover operators.” This is a result that has been sought for a long time
in the GP community (see Section 2), since the development of a precise schema the-
ory seemed the most natural way to give GP a theoretical foundation. Our theory
includes two main results describing the propagation of GP schemata: a microscopic
schema theorem and a macroscopic one. These models occupy the horizontal plane
in Figure 1 and so they have high predictive and explanatory powers, like their pre-
decessors for one-point crossover. The microscopic version is applicable to crossover
operators which replace a subtree in one parent with a subtree from the other parent
to produce the offspring. So the theorem covers standard GP crossover (Koza, 1992)
with and without uniform selection of the crossover points, one-point crossover (Poli
and Langdon, 1997b; Poli and Langdon, 1998), size-fair crossover (Langdon, 1999b;
Langdon, 2000b), strongly-typed GP crossover (Montana, 1995), context-preserving
crossover (D’haeseleer, 1994) and many others. In Figure 1, this model is within the
elongated ellipsoid at the back of the reference system. The macroscopic version is valid
for a large class of crossover operators in which the probability of selecting any two
crossover points in the parents depends only on the parents’ size and shape. So, for ex-
ample, it holds for all the above-mentioned crossover operators except strongly typed
GP crossover. This model is represented by the elongated dotted ellipsoids within the
triangular dashed spline in the lower part of Figure 1. Both theorems can be applied to
model most GP systems used in practice.

This document is the second part of a two-part paper, the first part of which, (Poli
and McPhee, 2003), introduced the important notion of node reference systems, the
related concepts of functions and probability distributions over such reference systems,
and some probabilistic models of different crossover operators, all of which are used in
Part II. So, the reader should be familiar (or at least should have available) Part I before
delving into Part II.

Part I is organised as follows. Firstly, we provide a review of earlier relevant work
on schemata in Section 2. Then, we show how the machinery introduced in Part I can
be used to derive a general microscopic schema theorem for GP with subtree-swapping
crossover in Section 3. We transform this into a macroscopic schema theorem valid for
a large set of commonly used subtree-swapping crossover operators in Section 4. In
Section 5 we show how the theory can be specialised to obtain schema theorems for
specific types of crossover operators, and how it can be used to obtain other general
results, such as an exact definition of effective fitness and a size-evolution equation for
GP with subtree-swapping crossover. In Section 6 we provide some examples which,
together with the discussion on the practicality of the approach and the summary of
some very recent applications of the theory provided in Section 7, further illustrate its
explanatory and predictive powers. Some conclusions are drawn in Section 8.

2 Background

Schemata are sets of points in the search space sharing some feature. For example, in
the context of GAs operating on binary strings, a schema (or similarity template) is
syntactically a string of symbols from the alphabet {0,1,*}, like *10*1. The character * is
interpreted as a “don’t care” symbol, so that, semantically, a schema represents a set of
bit strings. For example the schema *10*1 represents a set of four strings: {01001, 01011,
11001, 11011}.

SEarly versions of some of this work were presented in (Poli, 2001b) and, to a lesser degree, (Poli and
McPhee, 2001b). This paper is much more detailed, however, and includes a number of new results and
examples.
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Typically schema theorems are descriptions of how the number (or the proportion)
of members of the population belonging to a schema varies over time. As we noted
in (Poli et al., 1998), for a given schema H the selection/crossover/mutation process
can be seen as a Bernoulli trial (a newly created individual either samples or does not
sample H) and, therefore, the number of individuals sampling H at the next generation,
m(H,t+ 1), is a binomial stochastic variable. So, if we denote with a(H,t) the success
probability of each trial (i.e. the probability that a newly created individual samples H),
which we term the fotal transmission probability of H, an exact schema theorem is simply

Efm(H, ¢+ 1)] = Ma(H, t), M

where M is the population size and E[] is the expectation operator. Holland’s and
other worst-case-scenario schema theories (Holland, 1975; Goldberg, 1989b; Whitley,
1994) normally provide a lower bound for «(H, t) or, equivalently, for E[m(H,t + 1)].

One of the difficulties in obtaining schema theory results for GP is that the variable
size tree structure in GP makes it more difficult to develop a definition of GP schema
having the necessary power and flexibility. Several alternatives have been proposed in
the literature, each of which define schemata as composed of one or multiple trees or
fragments of trees. In some definitions (Koza, 1992; Altenberg, 1994; O'Reilly and Op-
pacher, 1995; Whigham, 1995) schema components are non-rooted and a schema is seen
as a set of subtrees that can be present multiple times within the same program. The
focus in these theories is to predict how the number or the frequency of such subtrees
varies over time. In more recent definitions (Poli and Langdon, 1997b; Rosca, 1997)
schemata are represented by rooted trees or tree fragments. These definitions make
schema theorem calculations easier and consequently form the basis of this work.

In the next sub-sections, we will briefly summarise the main features of early GP
schema theories, and then we will describe the definition introduced in (Poli and Lang-
don, 1997b; Poli and Langdon, 1998) which is what is used in the rest of this paper and
in a number of other recent theoretical developments (Poli, 2000a; Poli, 2000b; Poli and
McPhee, 2001b; McPhee and Poli, 2001; Poli and McPhee, 2001a; McPhee et al., 2001;
Poli and McPhee, 2001c; Poli et al., 2001). This will be followed by a description of
the first two exact schema theorems for rooted GP schemata (Poli, 2000a; Poli, 2000b)
which have inspired the work in this paper. Then we introduce the concept of effective
fitness which is closely related to schema theories. We conclude this section with a brief
discussion on the possible criticisms for schema theories.

2.1 Early Efforts in Developing a Schema Theory for GP

Steps towards the development of a schema theory for genetic programming started
as early as 1992. These early attempts concentrated on the propagation of program
components (often seen as potential building blocks for GP) in the population. Starting
in 1997, however, some researchers began treating schemata as sets of individuals, and
focusing on understanding how the number of programs sampling a given schema
(interpreted as a set) changes over time. (We use this latter approach in this paper.)

2.1.1 Theories on Positionless Schema Component Propagation

Koza (Koza, 1992, 116-119) made the first attempt to explain why GP works, producing
an informal argument showing that Holland’s schema theorem (Holland, 1975) would
work for GP as well. The argument was based on the idea of defining a schema as the
subspace of all trees which contain a predefined set of subtrees. According to Koza’s
definition a schema H is represented as a set of S-expressions; for example the schema
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H={(+ 1 x), (* x y)} represents all programs including at least one occurrence
of the expression (+ 1 x) and at least one occurrence of (* x y). Koza’s definition
gives only the defining components of a schema not their position, so the same schema
can be instantiated (matched) in different ways, and therefore multiple times, in the
same program.

Altenberg produced a probabilistic model of genetic programming which led to
the first mathematical formulation of a schema theorem for GP (Altenberg, 1994). On
the assumptions that the population is infinitely large, that there is no mutation, and
that fitness proportionate selection is used, Altenberg obtained an equation which al-
lows one to calculate the frequency of a given program in the next generation in terms
of quantities such as: the fitness and frequency of the programs in the population,
the average fitness of the programs in the population, the probability that inserting a
given expression in a parent program will produce a given offspring program, and the
probability that crossover will pick up a given expression (see (Altenberg, 1994) and
also (Langdon and Poli, 2002) where a detailed example is provided). This model is
important because it explicitly considers all ways in which programs can be created. It
describes the propagation of programs under standard crossover assuming that only
one offspring is produced as a result of each crossover operation. From this model,
defining a schema as being a subexpression (or component), Altenberg obtained an ex-
pression for the average chance of finding a given expression in the population at the
next generation as a function of a number of microscopic descriptors of the state of the
current population. This expression can be considered an exact microscopic subtree-
schema theorem for GP with standard crossover and infinite populations. Altenberg
did not analyse its components in more detail, but he indicated that a simpler schema
theorem could be obtained by neglecting the effects of crossover. (Note that Altenberg’s
notion of schema is that a schema is a subexpression. This is not exactly the same as the
notion introduced by Koza, where a schema could contain multiple subexpressions.)

Koza’s notion of schema was formalised and extended by O’Reilly (O'Reilly and
Oppacher, 1995) who derived a schema theorem for GP in the presence of fitness-
proportionate selection and crossover. The theorem was based on the idea of defining
a schema as an unordered collection (a multiset) of subtrees and tree fragments. Tree
fragments are trees with at least one leaf that is a “don’t care” symbol ("#) which can
be matched by any subtree (including subtrees with only one node). For example the
schema H={ (+ # x), (* x y), (* x y)} represents all the programs including
at least one occurrence of the tree fragment (+ # x) and at least two occurrences of
(* x y). The tree fragment (+ # x) is present in all programs which include a +
having x as the second argument. O'Reilly’s definition of schema allowed her to de-
rive a worst-case-scenario schema theorem which provided a rather pessimistic lower
bound for the expected number of instances of a given schema in the population at the
next generation as a function of macroscopic quantities such as the mean fitness of the
instances of the schema in the current generation. Like Koza’s definition, O’Reilly’s
schema definition gives only the defining components of a schema and not their po-
sition, so the same schema can again be instantiated in different ways, and therefore
multiple times, in the same program. As a result, her schema theorem describes the
way in which the components of the representation of a schema propagate from one
generation to the next, rather than how the number of programs sampling a given
schema changes over time.

In the framework of his GP system based on context free grammars (CFG-GP)
Whigham produced a concept of schema for context-free grammars and a related
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schema theorem (Whigham, 1995; Whigham, 1996). In CFG-GP programs are gener-
ated by applying a set of rewrite rules taken from a pre-defined grammar to a start
symbol S. In CFG-GP the individuals in the population are derivation trees whose in-
ternal nodes are rewrite rules and whose terminals are the functions and terminals used
in the program. Whigham defines a schema as a partial derivation tree rooted in some
non-terminal node, i.e. as a collection of rewrite rules organised into a single derivation
tree. So, a schema represents all the programs that can be obtained by completing the
schema and all the programs represented by schemata which contain it as a component.
When the root node of a schema is not S, the schema can occur multiple times in the
derivation tree of the same program because of the absence of positional information in
the schema definition. Whigham'’s definition of schema led him to derive an interesting
worst-case-scenario schema theorem which provides a lower bound for the number of
instances of a schema at the next generation as a function of some macroscopic quanti-
ties such as the probabilities of disruption of schemata under crossover and mutation,
and the fitness of the schema. Like in Altenberg and O’Reilly’s cases, this theorem de-
scribes the way in which the components of the representation of a schema propagate
from one generation to the next, rather than the way the number of programs sampling
a given schema changes over time.

2.1.2 Theories on Positioned Schema Propagation

In 1997 two schema theories (developed at the same time and independently) were
proposed (Rosca, 1997; Poli and Langdon, 1997b) in which schemata are represented
using rooted trees or tree fragments. The rootedness of these schema representations
is very important as they introduce in the schema definition the positional information
lacking in previous definitions of schema for GP. As a consequence a schema can be
instantiated at most once within a program and studying the propagation of the com-
ponents of the schema in the population is equivalent to analysing the way the number
of programs sampling the schema changes over time.

Rosca (Rosca, 1997) proposed a definition of schema, called rooted tree-schema, in
which a schema is a rooted contiguous tree fragment. For example, the rooted tree-
schema H=(+ # x) represents all the programs whose root node is a + with x as
its second argument. Rosca derived a microscopic schema theorem for GP with stan-
dard crossover (when crossover points are selected uniformly) which provided a lower
bound for the expected number of individuals belonging to a schema in the next gener-
ation as a function of quantities such as the size of the programs matching the schema,
their fitness and the order of a schema.

In (Poli and Langdon, 1997b) we proposed a simple definition of rooted schema
for GP which allowed us to derive a worst-case-scenario schema theorem for GP; this
definition has subsequently been used to derive a variety of exact results, including
those reported in this paper. The definition is as follows:

Definition 1 (GP Schema) A GP schema is a tree composed of functions from the set F U{=
} and terminals from the set T U {=}, where F and T are the function and terminal sets used
in a GP run.® The primitive = is a “don’t care” symbol which stands for a single terminal or
function. The order O(H) of a GP schema H is the number of non-= symbols it contains.

A schema H represents programs having the same shape as H and the same la-

®In this paper we use the convention that the root node of a program or a schema also has an output link.
As a result there is always a one-to-one correspondence between nodes and links, and, therefore, we can
consider crossover points either as nodes or as links. We will also assume that the root node (or its output
link) can be chosen for crossover.
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Figure 2: Fixed-size-and-shape GP schema and some of its instances.

bels for the non-= nodes. For example, if F={+, *} and T={x, y} the schema
(+ x (= y =)) represents the set containing the four programs (+ x (+ y x)),
(+ x (+yy)),(+ x (*y x))and (+ x (* y y)) (seeFigure 2). Note that in
the other definitions of GP schema mentioned above, schemata divide the space of pro-
grams into subspaces containing programs of different sizes and shapes. Our schemata,
on the other hand, partition the program space into subspaces of programs of fixed size
and shape, and we will therefore refer to them as fixed-size-and-shape schemata.

In order to derive a GP schema theorem for fixed-size-and-shape schemata in (Poli
and Langdon, 1997b; Poli and Langdon, 1998) we used non-standard forms of mutation
and crossover, namely point mutation and one-point crossover. Point mutation is the
substitution of a node in the tree with another node with the same arity. One-point
crossover works by selecting a single shared crossover point in the two parent programs
and then swapping the corresponding subtrees, like standard crossover. To account for
the possible structural diversity of the two parents, one-point crossover analyses the
two trees starting from the root nodes and limits the selection of the crossover point
to the parts of the two trees which have the same topology.” The resulting schema
theorem (see (Poli and Langdon, 1997b; Poli and Langdon, 1998)) is a generalisation of
a version of Holland’s schema theorem (Whitley, 1994) for variable size structures (as
discussed in (Poli, 2001a)). Like Holland’s theorem it is a worst-case-scenario model,
i.e., it provides only a lower bound for a(H, t).

2.2 Exact GP Schema Theory for One-point Crossover

In (Poli, 2000b; Poli, 2000a) we were able to improve our worst-case-scenario schema
theorem producing an exact schema theory for GP with one-point crossover, thanks to
the introduction of a generalisation of the definition of GP schema: the hyperschema.

Definition 2 (Hyperschema) A GP hyperschema is a rooted tree composed of internal
nodes from the set F U {=} and leaves from T U {=,#}. The operator = is, as before, a
“don’t care” symbol which stands for exactly one node, while the operator # stands for any valid
subtree.

For example, the hyperschema (* # (= x =)) represents the set of all programs
with the following characteristics: a) the root node is a product, b) the first argument
of the root node is any valid subtree, c) the second argument of the root node is any
function of arity two, d) the first argument of this function is the variable %, e) the
second argument of the function is any valid node in the terminal set.

"This is called the common region, and has been defined formally in Part I (Poli and McPhee, 2003).
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Using hyperschemata, it is possible to obtain the following exact microscopic ex-
pression for the total transmission probability for a fixed-size-and-shape GP schema H
under one-point crossover:®

a(H,t) = (1= peo)p(H,t) + Paotino(H, 1) @)

where

D hl; h/Z; ) . .
ono(H, 1) ZZ NG( hhh2) EC(;h )5(h1 € U(H,i))8(hy € L(H,i)) (3)

and
® P, is the crossover probability;
e p(H,1) is the selection probability of the schema H;’
e p(h,t) is the probability of selecting program h;°
e the first two summations are over all the individuals in the population;

o C(hq, hs) is the set of indices of the crossover points in the common region between
program hy and program hs (see Part I);

e NC(h1, hy) is the number of nodes in the common region;
e §(z) is a function which returns 1 if z is true, 0 otherwise;

e L(H,1i) is the hyperschema obtained by replacing all the nodes in H on the path
between crossover point ¢ and the root node with = nodes, and all the subtrees
connected to those nodes with # nodes (illustrations of this and the following hy-
perschema are given below);

e U(H,1)is the hyperschema obtained by replacing the subtree of H below crossover
point ¢ with a # node;

e if a crossover point ¢ is in the common region between two programs but it is
outside the schema H, then L(H,4) and U(H, i) are empty sets.

The hyperschemata L(H, i) and U(H, i) are important because, if one crosses over
any individual in U(H,3) at point ¢ with any individual in L(H, 1), the resulting off-
spring is always an instance of H.!! The converse is also true: if an individual which
has been created by crossover belongs to a schema H then there exists at least one i
such that the parents of the individual belong to L(H, i) and U(H, ). (One can easily
verify this by noting that if this was not true, then the theorem which led to Equations 2
and 3 could not be true.)

8Equations 2 and 3 are in a slightly different form than the result in (Poli, 2000b). However, the two results

are equivalent since C(h1, h2) = C(h2, h1) and NC(h1,ha) = NC(ha, h1).

°In fitness proportionate selection this is given by p(H,t) = %{gfﬂf)

of programs matching the schema H at generation ¢, f( H,t) is the mean fitness of such programs, f(t) is the
mean fitness of the programs in the population, and M is the population size.

f(r)

Mf(t

, where m(H,t) is the number

10Tn fitness proportionate selection p(h,t) = S where f(h) is the fitness of program h.

The symbol L stands for “lower part of”, while U stands for “upper part of .
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Figure 3: Example of schema and some of its potential hyperschema building blocks.
The crossover points in H are numbered as shown in the top left.

/

Let us consider an example which shows how L(H,3) and U(H,¢) are built. If
H =(* = (+ x =)) then, as indicated in the second column of Figure 3, L(H, 1)
is obtained by first replacing the root node with a = symbol and then replacing the
right subtree of the root node with a # symbol, obtaining (= = #). The schema
U(H,1) is obtained by instead replacing the subtree below the crossover point with
a # symbol obtaining (* # (+ x =)), as illustrated in the third column of Figure 3.
The fourth and fifth columns of Figure 3 show how L(H,3) = (= # (= x #)) and
U(H,3)= (* = (+ # =)) are obtained.

In (Poli, 2000a) we transformed Equations 2 and 3 into a macroscopic model in
which!?

ono(H, 1) ZZNC GGy 2 PUME)NG,Op(LH,) NG, @)

i€C(Gy,Gr)

where the first two summations are over all the possible program shapes G1, G, - -+,
i.e. all the possible fixed-size-and-shape schemata containing = signs only. The sets
U(H,i) N Gy, and L(H,i) N G are either empty or are (or can be represented by) fixed-
size-and-shape schemata. So, the result expresses the total transmission probability of

12Equation 4 is in a slightly different form than the result in (Poli, 2000a). However, the two results are
equivalent since C(Gg, G;) = C(G), Gi) and NC(Gy, G;) = NC(Gy, Gy,).
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H only using the selection probabilities of a set of lower- (or same-) order schemata.
Section 6.1 gives an example of schema equation for one-point crossover for a popula-
tion of variable length linear structures.

As discussed in (Poli, 2001a), it is possible to show that, in the absence of muta-
tion, Equation 4 generalises and refines not only the GP schema theorem in (Poli and
Langdon, 1997b; Poli and Langdon, 1998) but also a version of Holland’s (Holland,
1975; Whitley, 1994) and more modern GA schema theory (Stephens and Waelbroeck,
1997; Stephens and Waelbroeck, 1999). For a more detailed treatment and a variety of
examples and comparisons see (Langdon and Poli, 2002, Chapter 5).

2.3 Effective Fitness

The idea of effective fitness is associated with the observation that two individuals with
the same fitness may in fact have very different characteristics in terms of their ability
to transmit their genetic material to future generations. For example, it is possible that
the offspring of the first individual produced via crossover and/or mutation tend to be
fit, while those of the second individual tend not to be so. So, while the former will be
selected and used for reproduction, the latter will not. As a result, it is as if the first
individual we considered had a higher effective fitness than the second, although they
have the same actual fitness.

Their concept of effective fitness was introduced in GP by Nordin and Banzhaf
in (Nordin and Banzhaf, 1995; Nordin et al., 1995) to explain the reasons for bloat
and active-code compression. Fundamentally the idea was to interpret the effects of
crossover in a GP system by imagining an equivalent GP system in which selection
only is used, but in which each individual was given an appropriate effective fitness
(which takes the reproductive success of the individual into account) rather than the
original fitness. The concept of effective fitness is very similar to the concept of operator-
adjusted fitness (not to be confused with Koza’s adjusted fitness (Koza, 1992)) introduced
for GAs a few years earlier by Goldberg in (Goldberg, 1989a, page 155). Nordin and
Banzhaf’s notion of effective fitness and Goldberg’s notion of operator-adjusted fitness
are essentially the same, although their mathematical definitions are applicable to dif-
ferent representations and operators. Unfortunately, these mathematical definitions
were based on approximate models of GP and GAs (which neglected the constructive
effects of the genetic operators), and, therefore, they were unable to fully capture the
original idea of effective fitness.

Stephens and Waelbroeck (Stephens and Waelbroeck, 1997; Stephens and Wael-
broeck, 1999) succeeded in this, when they independently rediscovered the notion of
effective fitness. Their effective fitness of a schema is implicitly defined through the equa-

tion
Em(H,t +1)] = m(H, t)%,

assuming that fitness proportionate selection is used. Noting that E [

m(H,t) _ p(H,t . s s
a(H,t) and M) — fmns Weean obtain an explicit form

m(HA,}+1)j|

a(H,t)
Ht) = H,t 5
feff( 7) p(H,t)f( 7)7 ()
using a(H,t) from (Stephens and Waelbroeck, 1997; Stephens and Waelbroeck, 1999).
Using the exact schema result reported in the previous section (Equations 2 and 4),
in (Poli, 2000a) we extended the exact notion of effective fitness provided in (Stephens
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and Waelbroeck, 1997; Stephens and Waelbroeck, 1999) to GP with one-point crossover,
obtaining

U(H,i) NG, t)p(L(H,i) NGyt
farlB,0) = f D1 (1-3 3 AU 210((5,9 g)l()PEH g “9)
k1 i€C(Gr,G1) ’ ’

(see (Poli, 2000a; Poli, 2001a) for more details). This result gives the exact effective fitness
for a GP schema under one-point crossover: it is not an approximation or a lower bound.

2.4 Criticisms to Schema Theories

In the past the usefulness of schemata and the schema theorem has been widely crit-
icised (see for example (Chung and Perez, 1994; Altenberg, 1995; Fogel and Ghozeil,
1997; Fogel and Ghozeil, 1998)). While some criticisms are really not justified (as dis-
cussed in (Radcliffe, 1997; Poli, 2000d)) others are reasonable, although they apply
mainly to the old, worst-case-scenario-type schema theories.

Perhaps the most important criticism of this kind is that worst-case-scenario
schema theorems only give lower bounds on the expected value of the number of indi-
viduals sampling a given schema at the next generation, and cannot be used to make
predictions over multiple generations. Clearly, there is some truth in this. For these
reasons it has been frequently suggested that schema theorems are nothing more than
trivial tautologies of no use whatsoever. However, this position regarding schema the-
orems is not justified anymore. Indeed, modern schema theorems, such as the ones pre-
sented in this paper, provide exact values rather than lower bounds (e.g. see (Stephens
and Waelbroeck, 1997; Stephens and Waelbroeck, 1999)).

Clearly, exact schema theorems still suffer from the problem that the quantity on
the left-hand-side includes an expectation operator. However, this is not a fault in the
approach: it is simply due to the stochastic nature of evolutionary algorithms. The ex-
pectation operator can be removed as indicated in (Poli, 1999; Poli, 2000c) by converting
an exact statement on the expectation into a probabilistic statement over the confidence
interval of the predicted quantity. As shown in (Poli et al., 2001), once an exact schema
theorem is available, it is also possible to use it to model and study an evolutionary
algorithm using Markov chain theory. In (Poli et al., 2001) we did this for GP with
homologous crossover by extending Vose’s model for fixed length GAs (Nix and Vose,
1992; Vose, 1999) and using the exact schema equations to calculate the chain’s tran-
sition matrix. In turn, the availability of Markov chain model allows the calculation
of the probability distribution over the space of all possible populations at any time in
the future. So, schema equations can be used to make long term predictions. How-
ever, whatever the adopted model, we cannot change the fact that we are dealing with
processes in which randomness is present in a variety of places, and which, therefore,
do not allow exact predictions over multiple generations (Poli, 2000c). The only ex-
ception to this is when the population is infinite. In this case the expectation operator
can be removed from schema theorems, making the analysis considerably easier. For
example, the schema equations can be integrated to obtain the system’s trajectory for
any number of generations. (We will use this approach in the examples of Section 6.2.)
This infinite-propulation trajectory can be considered as a reasonable approximation
for what happens in finite populations, provided it does not span too many genera-
tions and the population is sufficiently large.

12 Evolutionary Computation Volume ?, Number ?
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VA Hyperschema Sample Instances

INCIND N T
ANV ,/>+ A
N\

Figure 4: Example of variable-arity hyperschema and some of its instances.

X

3 Microscopic Exact GP Schema Theorem for Subtree-swapping
Crossovers

For simplicity in this and the following sections we will use a single index to identify
nodes in a node reference system unless otherwise stated. We can do this because, as
indicated in Part I (Poli and McPhee, 2003), there is a one-to-one mapping between
pairs of coordinates and natural numbers.

In order to obtain a schema theory valid for subtree-swapping crossovers, we need
to extend the notion of hyperschema summarised in Section 2.2. We will call this new
form of hyperschema a Variable Arity Hyperschema or VA hyperschema for brevity.

Definition 3 (VA Hyperschema) A Variable Arity hyperschema is a rooted tree composed
of internal nodes from the set F U {=, #} and leaves from T U {=, #}, where F and T are the
function and terminal sets. The operator = is a “don’t care” symbol which stands for exactly
one node, the terminal # stands for any valid subtree, while the function # stands for exactly
one function of arity not smaller than the number of subtrees connected to it.

For example, the VA hyperschema (# x (+ = #)) (see Figure 4) represents all the
programs with the following characteristics: a) the root node is any function in the
function set with arity 2 or higher, b) the first argument of the root node is the variable
%, ¢) the second argument of the root node is +, d) the first argument of the + is any
terminal, e) the second argument of the + is any valid subtree. If the root node is
matched by a function of arity greater than 2, the third, fourth, etc. arguments of such
a function are left unspecified, i.e. they can be any valid subtree.

VA hyperschemata generalise all previous definitions of rooted schemata in GP.
For example, they generalise hyperschemata (Poli, 2000b; Poli, 2000a) (which are VA
hyperschemata without internal # symbols). These in turn generalise the notion of
fixed-size-and-shape schemata (Poli and Langdon, 1997b; Poli and Langdon, 1998)
(which are hyperschemata without # symbols) and Rosca’s schemata (Rosca, 1997)
(which are hyperschemata without = symbols).

VA hyperschemata are useful because they can express the syntactic features the
parents need to posses in order for them to produce instances of a specific schema
of interest for any given pair of crossover points. Figure 5 illustrates how instances
of the schema (* = (+ x =)) can be created for two different choices of crossover
points. For example, if the root donating parent matches the VA hyperschema (* #
(+ x =)) and the crossover point in it is the first argument of the root node, while
the subtree donating parent matches the VA hyperschema (# # =) and the crossover
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VA Hyperschema VA Hyperschema VA Hyperschema VA Hyperschema

Fixed-size-and-Shape

Containing the Containing the Schema Containing the Containing the
Subtree-donating Root-donating Subtree-donating Root-donating
Parent Parent Parent Parent

S = A = Ay
AN X

+

Crossover Crossover
Points Points

X =

Figure 5: Two different ways in which instances of the fixed-size-and-shape schema (*
= (+ x =)) canbe created.

point in it is the second argument of the root node, then the offspring will necessarily
match the fixed-size-and-shape schema (* = (+ x =)).

Thanks to VA hyperschemata and to the models of crossover developed in Part
I (Poli and McPhee, 2003), it is possible to obtain the following general result:

Theorem 1 (Microscopic Exact GP Schema Theorem) The total transmission probability
for a fixed-size-and-shape GP schema H under a subtree-swapping crossover operator and no
mutation is given by Equation 2 with

ao(H,t) =3 plha,0)p(ha,t) Y > plis jlhn, ha)d(hn € U(H, i))d(hs € L(H, i, )

h1  ha i€eH j
(6)
where:
o the first two summations are over all the individuals in the population;
o p(hi,t) and p(ho,t) are the selection probabilities of parents hy and hs, respectively;
o the third summation is over all the crossover points (nodes) in the schema H;
o the fourth summation is over all the crossover points in the node reference system;

o p(i,jlh1, ho) is the probability of selecting crossover point i in parent hy and crossover
point j in parent hy (see Part I);

e L(H,1,j) is the VA hyperschema obtained by rooting at coordinate j in an empty reference
system the subschema of H below crossover point i, then by labelling all the nodes on the
path between node j and the root node with # function nodes, and finally labelling the
arguments of those nodes which are to the left of such a path with # terminal nodes (an
illustration of this hyperschema is given below);

o U(H,1) is the hyperschema obtained by replacing the subtree below crossover point i with
a # node;

e if crossover point i is outside the schema H, then L(H, i, j) and U(H, 1) are empty sets.
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The meaning of the hyperschema U(H, 1) is essentially the same as in Section 2.2
(only the numbering for crossover points adopted there was different). The VA hyper-
schema L(H, i, j) represents the set of all programs whose subtree rooted at crossover
point j matches the subtree of H rooted in node i. The idea behind its definition is
that, if one crosses over at point j any individual matching L(H, 4, j) and at point i any
individual matching U (H, 1), the resulting offspring is always an instance of H.

Before we proceed with the proof of the theorem, let us look at one example of how
L(H,1i,j) is built (refer to Section 2 and Figure 3 to see how U(H, 1) is built). Let us con-
sider the schema H = (* = (+ x =)) and anode reference system with amasx = 2. As
indicated in Figure 6, L(H, (1,1), (2, 2)) is obtained through the following steps. Firstly,
we root the subschema below crossover point (1, 1), i.e. the tree (+ x =), at coordi-
nates (2,2) in an empty reference system. Note that this is not just a rigid translation:
while the + is translated to position (2, 2), its arguments need to be translated more, i.e.
to positions (3, 4) and (3, 5), because of the nature of the reference system used. Then,
we label the nodes at coordinates (0,0) and (1,1) with # functions since these are on
the path between node (2, 2) and the root. Finally, we label node (1,0) with a # terminal
as it is the only argument of a node replaced with # to be to the left of the path between
(2,2) and the root node.'®

Once the concept of L(H, 1, j) is available, the theorem can easily be proven.
Proof:  Let p(hi,he,i,j,t) be the probability that, at generation ¢, the selec-
tion/crossover process will choose parents hy and hy and crossover points ¢ and j.
Then, let us consider the function

g(hlah%i;ja H) = 5(h1 € U(H,l))&(hg € L(H,’L,j))

Given two parent programs, h; and hs, and a schema of interest H, this function re-
turns the value 1 if crossing over h; at position ¢ and hy at position j yields an off-
spring in H. It returns 0 otherwise. This function can be considered as a measure-
ment function (see (Altenberg, 1995)) that we want to apply to the probability distri-
bution p(ha, he,1, j,t) of parents and crossover points at time ¢. Since hq, ho, 7 and j
are stochastic variables with joint probability distribution p(h1, ha,1, j, t), the function
g(h1, h2,1,j, H) can be used to define a stochastic variable v = g(hy, ha, 1, j, H) whose
expected value is:

E =335 g(ha, hay i j, H)p(h, hay i, 5, 1). (7)

hi he i j

Since 1y is a binary stochastic variable, its expected value also represents the probability
of it taking the value 1, which corresponds to the probability that the offspring of h;
and hy be in H, i.e. E[y] = a(H,t).

We can write

p(hla h'2a iaja t) = p(ia.ﬂh‘la h2)p(h1a t)p(hZa t)a (8)

130ne might think that L(H, 1, j) is a generalisation of the hyperschema L(H, ) defined in Section 2. In
fact, L(H, ) is very similar to L(H, i,4). However, there are differences between these two hyperschemata.
In L(H, i) the nodes on the path to the root node in H are replaced with = symbols. Each of these stands for a
function of a fixed arity, which one can determine from the structure of H. In L(H, 1, ) the nodes in the path
to (0, 0) are filled with # symbols. Each of these stands for a function of arity not smaller than a value which
can be determined from the particular column occupied by the node (but obviously not bigger than amax)-
We will further discuss the relation between the VA hyperschema L(H, 4,%) and the hyperschema L(H, ) at
the end of Section 5.3.
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L(H,(1,1),(2,2))
0 1 2 3

Column
i

Column
i

Figure 6: Phases in the constructions of the VA hyperschema building block
L(H,(1,1),(2,2,)) of the schema H = (* = (+ x =)) within a node coordinate sys-
tem with amax = 2.
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where p(i, j|h1, h2) is the conditional probability that crossover points ¢ and j will be
selected when the parents are h; and hs, while p(hq,t) and p(hs,t) are the selection
probabilities for the parents. Substituting Equation 8 into Equation 7 and remembering
that if crossover point i is outside the schema H, then L(H, i, j) and U(H, ) are empty
sets, yields

E[’Y] = Zzp(hht)p(h??t) Z Zg(h17h277’7.77 H)p(l,]|h1,h2) (9)
hi hao ieH j
O

4 Macroscopic Exact GP Schema Theorem

In order to transform Equation 6 into an exact macroscopic description of schema prop-
agation we will need to make one additional assumption on the nature of the subtree-
swapping crossovers used: that the choice of the crossover points in any two parents,
hi and hs, depends only on their shapes, G(h1) and G(h2), not on the actual labels
of their nodes, i.e. that p(i, j|h1, he) = p(i, j|G(h1),G(h2)). We will term such opera-
tors node-invariant crossovers. Most GP crossover operators used in practice fall in this
category.

Theorem 2 (Macroscopic Exact GP Schema Theorem) The total transmission probability
for a fixed-size-and-shape GP schema H under a node-invariant subtree-swapping crossover
operator and no mutation is given by Equation 2 with

ao(H,t) = YY" pli, |Gk, G)p(U(H,i) N Gy, )p(L(H,i, j) N Gy, 1), (10)
kil i€H j

where the schemata G1, Ga, - - - are all the possible fixed-size-and-shape schemata of order 0
(program shapes) and the other symbols have the same meaning as in Theorem 1.
Proof: The schemata Gy, G2, --- represent disjoint sets of programs and their
union represents the whole search space. As a result, for every h, there is exactly
one k such that §(h € Gy) = 1, which allows us to rewrite any expression z as
2 k1 T06(h1 € Gr)d(he € Gi). If we set © = p(ha, t)p(ha,t) 3 i g 225 P(is jlha, ha)d (b €
U(H,))0(hs € L(H,i,j)), we can then rewrite Equation 6 as:

ayo(H, 1) (11)
= Y
h1,ha
= > > (ki € Gr)o(hy € Gi)z
hi,ha k,l
= D> Y 8(h € Gi)d(ha € Gi)p(h1, t)p(ha, 1)
k,l hi,hs
X Y Y pli, |1, ha)d(hn € U(H, ))5(hs € L(H, i, 7))
i€H j
= > Y plha,t)p(ha,t) Y Y pli, jlhy, ho)d(hy € U(H,i))d(ha € L(H, i, 7).
k0 h1€GE,ha€G i€H j

For node-invariant crossover operators p(i, j|h1, ha) = p(4, j|G(h1), G(h2)), which sub-
stituted into the previous equation gives:

o> plha,t)plhe,t) YD pli, §1G(ha), G(hs))é(hy € U(H,0))5(hy € L(H, i, §))

k0 h1€Gr,ha€G i€EH j

Evolutionary Computation Volume ?, Number ? 17



R. Poli and N. F. McPhee

k,d h1€Gk,ha€G i€EH j

kil i€H j h1€G ho€GY

S Y ph,t)p(hast) Y Y pli, §|Gr, Gi)(hn € U(H,0))é(ha € L(H, i, j))
SN p(0,41GkGr) Y plha, t)o(ha € U(H,i)) Y plha, t)d(hy € L(H, i, 7)) .

J

p(U(H’i)nGkvt) p(L(H’ivj)nGl’t)

O

If non-empty, the sets U(H, i) N G, and L(H,i,5) N G; are (or can be represented

by) fixed-size-and-shape schemata. So, the theorem expresses the total transmission

probability of H only using the selection probabilities of a set of lower- (or same-) order
schemata.

5 Applications and Specialisations

In this section we show how the theory can be specialised to obtain schema theorems
for specific crossover operators, and we illustrate how it can be used to obtain other
general theoretical results, such as an exact definition of effective fitness and a size-
evolution equation for GP with subtree-swapping crossover.

5.1 Macroscopic Exact Schema Theorem for GP with Standard Crossover

Let us specialise Theorem 2 to standard crossover (Koza, 1992). For simplicity we will
do this for the case in which the crossover points are selected uniformly at random.

In order to use the theorem we need to check whether standard crossover is
node invariant, i.e. whether it is true that p(i, j|h1, h2) = p(3,|G(h1),G(h2)). The
notion of name function introduced in Part I is applicable to any tree, including
schemata. If G is an order-0 schema (i.e. a program shape) N (d, i, G) # () exactly when
(d,i) is in the schema. It then follows that if & is a program and G(h) is its shape,
N(d,i,h) # 0 if and only if N(d,i,G(h)) # 0. Also, clearly S(h) = S(G(h)). So, using
i and j to represent the coordinates (d1,41) and (d»,42), respectively, the expression of
DstdUnif (d1,91,d2,i2|h1, ha) in Part I can be transformed as follows

§(N (i, h1) # B)6(N (4, h2) # 0)

pSthnif(i7j|h17h2) = ( )S(hz)
§(N(i,G(M)) # 0)d(N (4, G(h2)) #0)
5(G(h1))S(G(h2))
= pstaunit(i, |G (h1), G (h2)).

So, we can replace p(i, j|G, Gi) in Equation 10 with the expression

O(N (i, Gr) # 0)6(N(,Gi) # 0)
S(Gr)S(Gr) ’

obtaining, after appropriate simplification:

Theorem 3 (Macroscopic Exact GP Schema Theorem for Standard Crossover) The to-
tal transmission probability for a fixed-size-and-shape GP schema H under standard crossover
with uniform selection of crossover points is given by Equation 2 with

aroHt ZS Z Z HiﬂGka)( (H/Lj)nGla) (12)

’lEHﬁGk JjEG)
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5.2 Exact Schema Theorem for GP with Standard Crossover Acting on Linear
Structures

As an example let us further specialise the result in the previous section to the case of
linear structures. In the case of function sets including only unary functions, programs
and schemata can be represented as linear sequences of symbols like k1 hs...hn (see also
Section 6.1), and so:

o The hyperschema U(hihs...hn, ) = hiha...h;i#.

e The VA hyperschema L(hihs...hn,i,j) = (#)?hit1...hn, where the notation
(x)™ means x repeated n times. This is equivalent to the non-VA hyperschema
(=) h;y1...hn since, in the case of linear structures, #’s in function nodes can be
replaced by =’s.

(ki ;
e The set U(hihsa...hn,i) NGy, = { glhzth(_) f)(;;érjvi]:e

o The set L(hiha...hx,i,§) NGy = {é:)ahm...hN i)ftile:r\{/igei-i_N’

By substituting these quantities into Equation 12 and performing some simplifications
one obtains the following result

min(N,k)—1 ;
1 _ =Y his1..hn,t
Oéxo(hl...h]\l,t) = E E E p(hl...hi(:)k ,t) E p(( 3 — :_-li- NN ) (13)
k i=0 J

Equation 13 can be shown to be equivalent to the schema theorem for linear structures
reported in (Poli and McPhee, 2001b).

5.3 A Different Form of Macroscopic Schema Theorem for One-point Crossover

As an additional example, we will derive a GP schema theorem for one-point crossover
equivalent to the one described in Section 2.2.

Again, in order to use Theorem 2 we need to first check whether one-
point crossover is node invariant, i.e. whether it is true that p(i,jlh1,h2) =
p(i,j|G(h1),G(h2)). It is easy to see that NC(hi,hs) = NC(G(h1),G(h2)), and that
i € C(hi,h9) if and only if ¢ € C(G(h1),G(h2)). Therefore, the expression of
Pipt(di,i1,da,i92|h1, ha) in Part I can be transformed as follows

Pipt (4, §|h1, ha) { 1/NC(hy,h2) ifi=jandi€ C(hi,hs),

0 otherwise,
- 1/NC(G(h1),G(h2)) ifi=jandie€ C(G(h1),G(h2)),
o 0 otherwise,

= pipt(4, J|G(h), G(h2)).
So, we can replace p(i, j|Gy, Gi) in Equation 10 with the expression

d(i € C(Gr,G1))o(i = j)
NC(Gg, Gi) ’

obtaining, after some simplification:
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Theorem 4 (Macroscopic Exact GP Schema Theorem for One-point Crossover) The
total transmission probability for a fixed-size-and-shape GP schema H under one-point
crossover is given by Equation 2 with

1
WH ) =S — U(H,i) N Gy, H,i,i) NG, 14
) = 3 RGPV NCetLE 0N G0 (19

This result is equivalent to Equation 4. To see this we need to show that summing over
i € HNC(Gy,Gy) is the same as summing over ¢ € C(Gy,G;) and that p(U(H,i) N
G, t)p(L(H,i,1) N Gy,t) = p(U(H,i) N Gy, t)p(L(H,i) N Gy,t). The first follows from
the fact that if i ¢ H, then U(H,i) N Gy, = L(H,i) N G; = 0. So, all the terms in
Equation 4 for which ¢ € C(Gy,G)) but i ¢ H are zero. The second follows from the
fact that L(H,i,7) and L(H,i) have exactly the same subtree of H at exactly the same
position, while all their remaining nodes are “don’t care” symbols (of different kinds).
So, either L(H,i) N G; and L(H,i,i) N G; are both empty sets, or they are the same
fixed-size-and-shape schema. In either case L(H,i) N G; = L(H,i,i) N G.

5.4 Size-evolution Equation for GP with Subtree-swapping Crossover

Let us call any crossover operator for which p(i,j|hi, ha) = p(j,ilhe, h1) a symmetric
crossover operator.

Theorem 5 (GP Average Size Evolution Equation) Let p be the mean size of the programs
in a GP population. Then, the expected value of {1 at generation t + 1, E[u(t + 1)], in a GP
system with a symmetric subtree-swapping crossover operator in the absence of mutation can
equivalently be expressed in microscopic form as

Elu(t+1)] = )_ S(h)p(h,1), (15)
heP

where P denotes the population, or in macroscopic form as

Elu(t+1)] =) S(G1)p(Gi,1). (16)
l

Proof: By definition the expected mean size of the individuals in a population at the
next generation is given by

Elu(t+1)]=>_ S(h)a(h,t
hesS

where the summation is over all possible computer programs in the search space S. By
substituting Equations 2 and 6 (specialised for H = h) into this equation, one obtains'*

Elut+1)] = (1 —=pso) Y S(hym(h,)p(h,t) +poo Y S(h) D > plha,t)p(ho, 1)

hes hes h1E€P h2€P

x> Y iy i, ho)d(hn € U(h,))é(hs € L(hyi, ),

where we did not limit 4 to range only over the crossover points in h because if &
is outside h, then L(h,i,j) and U(h,i) are empty sets and so d(h1 € U(h,3))d(h2 €

4The selection probability of a schema p(H,t) is given by the sum of the selection probabilities of the
elements of the population in the schema. If one specialises this for a program h, this is also equivalent to
m(h, t) times the selection probability p(h,t) of any specific instance of that program in the population.
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L(h,i,j)) = 0. Because m(h,t) # 0 only for h € P, >, s S(h)m(h,t)p(h,t) =
> nep S(h)p(h,t). Therefore,

Eut+1)] = (1=pw) >, Shp(h,t)+pse Y, > p(ha,t)p(ha,t)

heP h1€P ho €P

XZZ]D i, jlh1, ha) Y S(h)8(hy € U(h,i))5(hs € L(h,i, j)).

heS

Note that S(h)é(hy € U(h,i))d(he € L(h,i,j)) # 0 only when the program h consists
of the upper part of h; with respect to crossover point ¢ and the lower part of ks with
respect to crossover point j, which contain S(U (hy,4)) — 1 and S(ha) — (S(U(h2,j)) —1)
nodes, respectively. Therefore,

Eut+1)] = (1—pw) ) Sh)ph,t) +
heP

Dzo Z Z hl; h2;

h1€P ha€P

x 30 3 pli gl o) (S(U (1, ) = 1+ S(ha) = SW ke, ) +1).

However, it easy to show that for symmetric crossovers

> 2 Pl t)p(ha,t) 303wl jlhns ho) S(U (R, )

h1€P ho€P

Z Z hly h27t)ZZp(lajlhlahd)S(U(hZ;J));
i g

h1EP ha €P

by simply reordering the terms in the summations and renaming their indices. So,

Elpt+1)] = (L=ps0) ) Sh)p(h,t) +
hePpP
=1
Dzo z Z hl; h27 (hZ)Zzp(iaﬂhth?)
h1E€P ha €P i g
= (1=puo) Y Sp(h,t) + peo Y, D p(hn,t)p(ha, t)S(hs)
heP h1€P ho€P
=1
= ]- _pwo ZS h t +on Z p(h2at)5(h2) Z p(hlat)
heP ho €P hi1€P
= ]- —on ZS h t +pa:o Z p(h2at)5(h2)
heP ho€P
= D Smp(h,t
heP
= > > Shp(ht
I heGNP
= > S(G) D pht)
l heG,NP
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Z Gla

l

O
From this theorem it follows that on a flat landscape
Gl: m(Gy,t)
p(t+1)] Zs (GD)p(Gu,t) Zs (G1)
(or E[u(t +1)] = >, S(Gi)a(Gy, t — 1) for infinite populations), whereby
Corollary 6 On a flat landscape,
Elp(t +1)] = p(?)- 17)

For infinite populations, the expectation operator can be removed from the pre-
vious theorem and corollary. In (Poli and McPhee, 2001b) we obtained more specific
versions of these results for one-point crossover and standard crossover acting on linear
structures.

The importance of these results is discussed in the next section.

5.5 Impact of the Size-evolution Equation on Bloat Research

Over the years a number of different explanations have been proposed for bloat (or its
absence) in different representations and with different operators (Blickle and Thiele,
1994; McPhee and Miller, 1995; Nordin and Banzhaf, 1995; Zhang and Miihlenbein,
1995; Soule, 1998; Langdon et al., 1999; Langdon, 1999a; Langdon and Banzhaf, 2000;
Langdon, 2000a). Most of these explanations have been qualitative but almost always
they have been corroborated by convincing experimental results.

Qualitative explanations are very appealing, because they can be easily communi-
cated to and understood by other fellow researchers. Most qualitative explanations of
bloat are probably correct if seen within the set of assumptions they make. However,
it appears that none is actually complete, i.e. that captures all aspects of what happens
or what can happen in a GP system or, more generally, a variable size-and-shape rep-
resentation undergoing evolution.

Theorem 5 is important because it provides a framework which can help us under-
stand the reasons for variations in mean program size, such as those observed in bloat.
In particular, the theorem indicates that for symmetric subtree-swapping crossover op-
erators the mean program size evolves as if selection only was acting on the population.
This means that if there is a variation in mean size (bloat, for example) it must be the re-
sult of some form of positive or negative selective pressure on some or all of the shapes
Gi. So, clearly, any qualitative or quantitative explanation for bloat, if correct, has to
agree with this result.

The mean size of the individuals in the population at time ¢ can be written as

Elpu(t 1—ZN (G1)®(G1, 1) (18)

where ®(G, t) is the proportion of individuals of size and shape G, in the population
at time ¢. Direct comparison of Equations 16 and 18 tells us that there can be a change
in mean program length only if

Elu(t+1) - ZNGl (Gi,t) — 3(Gi,t)) # 0. (19)
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Obviously, this can only happen if the selection probability p(G;, t) is different from the
proportion ®(Gy,t) for at least some [. Note that being different does not mean being
bigger. So, it is entirely possible to imagine situations where the expected change in
mean size E[u(t + 1) — p(t)] is negative.

Because ), p(Gi,t) = 1 and also ), ®(G;,t) = 1, for bloat to happen there will
have to be some short G;’s for which p(G;,t) < ®(G),t) and also some longer G;’s
for which p(Gy,t) > ®(Gy,t) (at least on average). (The condition p(Gy,t) > ®(G,t),
e.g., implies that there must be some members of G; which have an above average
fitness.) So, to be formalised and made rigorous qualitative theories of bloat have to
state for which G;’s there is a mismatch between p(G, t) and ®(Gy, t) and prove that this
leads to a positive E[u(t + 1) — u(t)]. So, they will have to state mathematically which
members of those G;’s are of below-average fitness and which are above and why. In
many cases this cannot be done using Theorem 5 alone, since it requires looking at how
crossover samples the search space at a finer level of abstraction than that provided by
the schemata G;. However, this can be done exactly by applying the schema theory to
schemata of higher order. So, it is likely that transforming qualitative explanations of
bloat into rigorous mathematical theories will require some form of schema analysis."

Note, Equation 16 only makes predictions about one generation in the future. If
one wants to know what will happen over multiple generations, then one really needs
to consider an appropriate set of exact schema equations (and to assume infinite popu-
lations). This is because these equations describe exactly the full search bias of the oper-
ators, unlike Equation 16 which only describes the size bias of one selection-crossover
application. This is not necessary, however, if one is only interested in controlling bloat,
not explaining it. In this case, bloat can be controlled very effectively by acting on the
selection probabilities in Equation 19, as shown in (Poli, 2003) (see also Section 7).

5.6 Effective Fitness for GP with Subtree-Swapping Crossovers

Once an exact schema theorem is available, it is easy to extend the notion of effective
fitness provided in (Stephens and Waelbroeck, 1997; Stephens and Waelbroeck, 1999)
(see Section 2.3) to GP with subtree-swapping crossovers. Indeed, by using the defini-
tion in Equation 5 and the value of a(H, t) obtained from Equations 2 and 10, we obtain
the following

Theorem 7 The effective fitness of a fixed-size-and-shape GP schema H under a node-invariant
subtree-swapping crossover operator and no mutation is

fEf‘f(Hat) =
S [1= P20 (1= 32 3 p0,41GH, G1)

k,l i€H,j

p(H, 1) '

This result gives the exact effective fitness for a GP schema under subtree swapping
crossover; it is not an approximation or a lower bound.

It is possible to specialise this definition to standard crossover. Again for simplicity
we will consider the case in which crossover points are selected uniformly at random.
Here we use Equation 12 to obtain:

15Tn (McPhee and Poli, 2001) we explored some of these ideas for a specific type of landscape (flat but with
spikes or holes). There we started from Equation 16, and we split the schemata G| into sets of equal fitness,
which allowed us to simplify the equation because of our assumptions about the landscape. As a result, for
that landscape, we were able to, rather simply, prove under which conditions one should expect bloat and
under which conditions one should expect shrinking from one generation to the next.
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Corollary 8 The effective fitness of a fixed-size-and-shape GP schema H under standard
crossover with uniform selection of crossover points is

feﬂ'(HJt) =

Ht 1-— 2o 1-— p HlﬂGk,)((Hlj)ﬂGl,)
f( ) 3 ;ze;awé, )S(Gl) ( > )

In future work we intend to compare this definition with the approximate notions
of effective fitness and operator-adjusted fitness introduced in (Nordin and Banzhaf,
1995; Nordin et al., 1995; Goldberg, 1989a) and summarised in Section 2.3. For a discus-
sion on the utility of the notion of effective fitness and an example of effective fitness
landscape for linear structures undergoing subtree crossover, see (Langdon and Poli,
2002, Chapter 6).

6 Examples

In this section we provide examples which further illustrate the explanatory and pre-
dictive powers of the theory. Since the calculations involved in applying the theory
may become quite lengthy, these examples have purposely been chosen to be simple
so that the schema equations can be written explicitly (i.e. without summations, hyper-
schemata, etc.) in a few lines of text.

6.1 Linear Trees

In this example we will describe how to apply the exact schema theory for standard
crossover to a specific schema and a specific population of linear structures.

Let us imagine that we have a function set ¥ = {A;, Bf,C¢, Dy, E;} including
only unary functions, and the terminal set 7 = {A;, B;, Cy, Dy, E; }. So, for example, a
program in this search space might look like (A¢(ByBy)). Since, the arity of all func-
tions is 1, we can remove the parentheses from the expression obtaining A;B;B;. In
addition, since the only terminal in each expression is the rightmost node, we can re-
move the subscripts without generating any ambiguity, obtaining ABB. This can be
done for every member of the search space, which can be seen as the space of variable-
length strings (as indicated also in Section 5.2) over the alphabet {A, B, C, D, E}. So, in
this example GP with standard crossover is really a type of non-binary variable-length
GA.

Let us further assume that p,, = 1 so that a(H,t) = a,(H,t). Because we are
operating on linear structures we can then use the specialised Equation 13 instead of
Equation 12.

Let us now consider the schema AB=. We want to measure its total transmission
probability under fitness proportionate selection and standard crossover in the popu-
lation

Population | Fitness
AB 2
BCD 2
ABC 4
ABCD 6

where fitness has been assigned to individuals in a completely arbitrary manner. To do
that we need to compute the various components of Equation 13 for the case N = 3,
hihahs = AB=. Since the population does not contain any programs with more than 4
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nodes (i.e. p(G,t) = 0 for k > 4), we can limit ourselves to considering the terms with
k < 4 in the equation, obtaining (via Equation 1)

E[m(aB=,t+ 1)]

M
op(= 4B =)p(====) + 1 p(==B =)p(h ===) + - p(====)p(AB==) +
(=B =)p(k ===) + op(===)p(AB ==) + p(B=)p(h ===) +
SP(==)p(AB ==) + 1p(=)p(KB ==) + —op(= KB =)p(===) +
p(==B=)p(h ==) + cp(====)p(B =) + gp(=B =)p(A ==) +
=p(===)p(AB =) + £p(B =)p(A ==) + cp(= AB =)p(==) +
§P(==B =)p(A =) + 7p(AB =)p(==) + £p(=B =)p(A =) +

1P(B D)p( =) + 7p(= 4B =)p(=) + >p(AB =)p(=),

where p(-) = p(-,t) for brevity. By calculating the selection probabilities in this equa-
tion, we obtain E[m(AB=,t + 1)] ~ 0.49. So, under standard crossover the propagation
of the schema AB= is highly disrupted in this population, its proportion being halved
despite it being an above-average-fitness schema. Note that this is not necessarily al-
ways the case. It would, for example, be possible to reduce the disruption by decreasing
the crossover probability.

It is interesting to compare these results with those obtained by applying the exact
macroscopic GP schema theorem for one-point crossover:

E[m(aB=,t+1)] _

M
= PAB =)p(=) + 5p(AB =)p(==) + zp(= B =)p(4 =)
+ 3p(AB S)p(===) + 3p(= B =)p(4 ==) + 3p(===)p(4B =)
+ 3p(AB =)p(====) + 1p(= B =)p(4 ===) + 1p(===)p(4B ==)

In this case the number of ways in which instances of the schema can be created is con-
siderably smaller (9 vs. 21), but the coefficients for each pair of selection probabilities
are bigger. As a result for the population in question we obtain E[m(AB=,t+1)] ~ 1.17
which, thanks to strong creation effects, is bigger than the value 1.14 obtained when
Pzo = 0 (i.e., the selection only case).

6.2 Evolution of size and shape for binary trees

In this example we will use the schema theory to explore the evolution of size and shape
for binary trees. To keep the example and its calculations manageable, we will consider
only the shapes of the trees and not the specifics of their nodes (i.e., all schemata will
consist solely of ‘=’s). We will also limit our attention to just the five binary trees having
depth < 2, which we will label G, G2, s, G4, and G5 (see Figure 7).
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Figure 7: The five smallest shapes for binary trees.

If we assume we have a population consisting solely of elements of G; through
G5, we can use Theorem 3 to compute the transmission probabilities for each shape in
terms of the selection probabilities of those shapes. In particular, if we let p; denote the
selection probability for shape G; (i.e., p; = p(G;)), and we assume that p(G) = 0 for
any shape G with depth greater than 2, we then find that:

00(G1) = =ps®+ Spa® + S ps® + Spsps + 2paps + pips + —papa + &
xo\G1 = 49;05 25174 25173 5173;05 7p2p5 7P1p5 25173104 3p2p4
1 4 4 1 2, 9
+§p2p3 + 3p1p4 + 3p1p3 + pip2 + 3p4p5 + §p2 +m (20)
(G) — 3 2_}_1 _1_1 +E +i 2_|_£ +g
0o\ G2 = 49P5 5174175 5P3P5 21172175 25174 25173174 31721?4
2 pips  ps® ¥ 2paps + opips + Opa® + pipe + 2 (21)
5101104 25173 3172103 5171173 9102 D1p2 7171105
(G ) — i 2 + i + g + i + 1 + E
Oixo (3 = 49175 35P4P5 35103105 21P2P5 7101175 25103104
1 5, 3 4 1 1,
— ey - — — 22
+25P3 + 5pzp3 + 5171103 + 15102174 + 9102 (22)
(G ) — i 2 + § + E + i + 1 + E 2
Oixo(rg = 49175 35P4P5 35103105 21P2P5 7101175 25104
L pepe + 2 papa + Spipa+ Ll (23)
2 5173104 5172174 5 DP1P4 1 5102103 9p2
00(Gs) = Sps+ S pups + e paps + epaps + opips + e pi?
xo\bs) = 7175 35174175 35103105 21172105 7171175 25174
2 1 1, 1
— — — — . 24
+opPaPa + 7pPePa + opps” + =paps (24)

From direct inspection of these equations one can see how different combinations
of shapes (chosen as parents) can (and cannot) interact to construct shapes. As a simple
example, the term p% only appears in one of these equations, namely that for o,,(G1)
and its coefficient is 1. This means that if we have a population that consists only of
instances of shape G (and so only p; > 0), all we can build is again instances of G;.
Thus a population consisting solely of instances of G; (i.e., trees that are simply leaves)
is an absorbing state for evolution. The relationships between programs of different
shapes are illustrated in Figure 8.

Further, one can (after making a few more simplifying assumptions) iterate these
equations to better understand the biases of standard crossover. In particular we will
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Figure 8: The interaction of shapes for small binary trees. The top and bottom row show
all the possible pairs of shapes that can be chosen as parents. The middle row shows
the possible child shapes, augmented with a “trash bin” on the right which represents
offspring that have depth greater than 2. An edge connects a pair of parents to a child
(or the “bin”) if that pair of parents can be used to construct an offspring of the given
shape using standard crossover.

e Assume that we have infinite population, and
e Assume p(G) = 0 for all shapes G with depth greater than 2.

The first assumption converts the expectations represented by a, into actual quantities,
which allows us to iterate the equations. At first sight this assumption might look not
very realistic. However, the infinite population behaviour is the limiting behaviour for
finite populations as the population size increases. So, if one is interested in iterating
the schema equations for a finite number of generations, it is always possible to size
a finite population in such a way to make the deviations from the infinite population
trajectory as small as required. So far, every time we have used finite populations to
empirically verify the schema equation predictions obtained for infinite populations,
the match has been always remarkably good (e.g. in the recent results summarised in
Section 7).

The second assumption allows us to ignore all shapes deeper than 2, which allows
us to iterate the equations without having to track the proportion of deeper trees. While
this may seem a major assumption, it is in fact simply an instance of the kind of depth
limits that are common in GP implementations (albeit with a lower limit than normal).

As an aside it is worth considering the implications of different ways of imple-
menting these kinds of limits on unduly large or deep offspring. One common imple-
mentation (which is also the one assumed here) is to discard the offending offspring,
choose two new parents, and repeat the recombination process. In the infinite popula-
tion case this is in fact equivalent to just setting the fitness of the offending offspring
to 0, as in each case the proportion of the population that would have been devoted
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to overly big trees is just redistributed proportionally across the remaining legal sizes.
With finite populations, sampling error means that setting the fitness to 0 is not exactly
the same as discarding, although with large populations their behaviours will be very
similar.

Another common method of implementing this sort of depth or size limit is to dis-
card the offending offspring and instead insert a copy of one of the parents. This is
in fact quite different from the methods just discussed, and can have a number of un-
fortunate side effects. This process tends to increase the effective fitness of trees whose
size is near the limit by regularly allowing them to make (exact) copies of themselves
instead of having to enter the (risky) lottery of crossover. Since these kinds of limits are
typically intended to keep the average size down, this increase in the effective fitness
of large individuals seems at best unfortunate. In general, copying a parent when a
recombination operator “fails” will tend to increase the effective fitness of individuals
that are likely to cause that “failure”, which is typically going to be counterproductive.
As a result it is usually preferable to either set the fitness of the “failed” offspring to
0 or restart the selection and recombination process, as these approaches will tend to
decrease the effective fitness of individuals likely to cause a “failure”.

Looking at the table in Figure 8 suggests that the shapes G'3,G4,and G5 (and to a
lesser degree G'5) are all going to have their effective fitness reduced if we set the fit-
ness of overly big trees to zero, while this will have no effect on the effective fitness
of Gi. The links leading to the “bin” indicate which pairs of parents are capable of
generating shapes that are “too big” (i.e., have zero selection probability), and we see
that individuals having shape GG; can never produce such unfit offspring. On the other
hand G'3,G4, and G5 are almost always capable of producing offspring that are “too
big” (with the only exception being when they are combined with instances of G1).
The quantitative magnitude of this effect will depend on the specific coefficients in
Equations 20-24 (how likely is this combination to produce an unfit offspring) and the
selection probabilities (how likely is this combination of parents). As long as the proba-
bility is non-zero, however, that a shape (or more generally an individual) will generate
an offspring that is “too big”, then the effective fitness of that shape (or individual) is
reduced by a non-zero amount.

As a specific example, consider the case where both parents are instances of
Gs. Adding up the ps* terms in Equations 20-24 yields £2ps?, which means that

— 2 = 13 ~ 29% of the offspring will be unfit when both parents are instances of Gs.
This would then lead to a substantial drop in effective fitness (from whatever the actual
fitness was), and a corresponding drop in the proportion of the population sampling
shape G'5. This is in sharp contrast with shape G, which is incapable of generating off-
spring that are “too big” when combined with itself (or in fact any of the other shapes),
and consequently its effective fitness is unaffected by this depth limit.

To quantitatively illustrate these ideas, let us use fitness proportionate selection
and assume the fitness of each shape G1,...,Gs is 1 (so p; = 1/5). We can then iterate
the equations to see (numerically) what the distribution of shapes is over time. The
results are graphed in Figure 9, and we find that the population appears to be converg-
ing to a state where it contains only instances of G; (i.e., trees consisting of just a single
leaf).!® This suggests that in the absence of any countervailing forces (e.g., fitness), the
combination of standard crossover and depth limits increases the effective fitness of G

16Given the data it's possible that the proportion of G1 might, for example, converge asymptotically to
some value below 1. The two-level fitness function analysis in (McPhee and Poli, 2001), however, suggests
that the proportion of G; will in fact have a limit of 1.
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Proportion of shapes over time
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Figure 9: The proportion of G, G2, G3, and G5 in the population over 1000 generations
when each shape has the same fitness (and thus the same selection probability) and
each shape has the same initial proportion (i.e, 0.2). (Note the log scale for generations.)
Because of the symmetries, the proportions for G4 are the same as those for G3 and thus
aren’t graphed. The proportion of G; and G both rise initially, but the proportion of G
soon begins to drop while the proportion of Gy continues to climb. The proportions of
G3,G4, and G all quickly drop to nearly zero, while the proportion of G also appears
to be dropping to zero, albeit more slowly, leaving G as far and away the dominant
shape.

sufficiently to push the population to small, shallow trees, and eventually to trees that
are just leaves.

To see what effect fitness can have we can, for example, set the fitness of G5 to twice
that of the other shapes (i.e., 2). In this situation one might expect that after a certain
number of generations the population would contain large proportions of programs of
shape G5. However, if we again start with equal proportions of shapes we find that
the population converges to the distribution illustrated in Figure 10. Here we see that
increasing the fitness of G5 increases the effective fitness of G5 sufficiently to keep its
proportion (and that of G'5) well above 0. The proportion of G5 is, however, still well
below the proportion of G which is less fit.

7 Relevance of the Schema Theory to GP Applications

Practicioners are often more interested in clear answers to questions regarding how to
choose optimum operators, parameter settings, representation, fitness function, etc. for
specific problems than in beautiful theories. So, some of the theoretical work reported
above may leave the practicioner wondering as to the relevance of schema theory re-
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Proportion of shapes over time
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Figure 10: Similar to Figure 9, but with the fitness of G5 set to double that of the other
shapes (i.e., 2). Increasing the fitness of G's keeps the proportion of both G5 and G5 up
well above 0, but still well below that of G.

sults in the context of GP applications.

In this section we will briefly summarise recent applications of the schema theory
described in this paper which show how theory can in fact meet practice, suggesting
various recipes, a theoretically well-founded anti-bloat method and even optimum de-
sign strategies.

In (Poli and McPhee, 2001b) we derived the version of exact schema theorem
for GP with standard crossover which is applicable to the case of linear structures
(Equation 13) and used it to study, both mathematically and numerically, the schema
equations and their fixed points for infinite populations. In particular, we considered
the schema equations for schemata of order zero, each of which represents a class of
strings/programs of a particular length, for an infinite population exploring a flat fit-
ness landscape. This situation is of interest since its analysis can reveal the natural
length biases of the operators in the absence of other evolutionary forces (such as ge-
netic drift and the selection bias). The analysis showed that fixed-point distributions of
lengths exist and that they form the following family of discretised Gamma distribu-
tions:

®(Gn) = NrV-1(r —1)2, (25)

where Gy is the schema representing all programs of length N, r = (z—1)/(1+ 1) and
 is the mean length of the individuals in the population. This result was corroborated
both by experiments based on real (finite) GP populations and by numerical simula-
tions based on the integration of the schema equations (on the assumption of infinite
population).
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This result has important implications for a variety of linear GP systems
(e.g. (Nordin, 1994; O’'Neill and Ryan, 2001)) and variable-length GAs (similar implica-
tions should also be expected for tree-based GP systems). Firstly, unless the population
is initialised using a Gamma length distribution, GP crossover will exert a very strong
bias which will push the population towards a Gamma like distribution within a few
generations even in the presence of selective pressure. This bias may significantly mask
the signal coming from the fitness function, and overpower the intended bias exerted
by selection. So, one practical implication of this observation is that there may be value
in initialising the population so that the distribution of sizes is at least a rough approx-
imation of a Gamma distribution.

Another implication of this result is that due to this bias of standard crossover,
shorter than average structures are sampled exponentially more often than longer ones.
So, in the absence of an explicit bias to bloat, there can be some wasteful resampling
of short structures and insufficient sampling of long ones. This effect could be reduced
by setting the mean length of the initial structures high enough to guarantee adequate
sampling of the range of length classes where interesting (or at least acceptable) solu-
tions are believed to be. So, a second practical recipe is to avoid the common prac-
tice of initialising the population with very small structures assuming they will grow
as needed, since this may lead to poor sampling of larger solutions in the early, all-
important stages of a run (and to a waste of computation due to frequent resampling
short programs).

In (Poli et al., 2002) we extended the study of the search biases produced by GP
subtree crossover when applied to linear representations by focusing on the effects of
crossover on the distribution of primitives in the representation. In the absence of se-
lection, the study naturally led to generalisations of Geiringer’s theorem (Geiringer,
1944) and of the notion of linkage equilibrium, which, until now, were applicable only
to fixed-length representations. The study revealed the presence of a diffusion process
by which, even in the absence of selective pressure and mutation, the primitives in a
particular individual tend not just to be swapped with those of other individuals in the
population, but also to diffuse within the representation of each individual. More pre-
cisely, crossover attempts to push the population towards distributions of primitives
where each primitive is equally likely to be found in any position in any individual
(a similar behaviour should also be expected in tree-based GP systems). This diffusive
bias is very important, because it is expected to interfere with the desired selection bias.
For example, its presence may completely undo within a few generations the correla-
tions built by clever initialisation strategies (such as inoculation). So, a third practical
suggestion of the theory is to initialise the population making sure each primitive is
equally likely to be present at each node coordinate.

Another practical consequence of the diffusive bias of crossover is the difficulty of
genetic transmission. If at any point during a run a new, better than average solution
is found, selection will try to promote it and chances are that every time it is selected
it will be used in a recombination event (expecially if the crossover probability is very
high, which is almost always the case in GP practice). If this happens the diffusive bias
will tend to produce offspring where the parent primitives have “diffused away” from
their original positions in the parents, which will often lead to below average fitness in-
dividuals. As a consequence, highly fit individuals are not guaranteed to successfully
transmit their genetic makeup to the future generations, and may even disappear from
the population alltogether. So, a fourth practical recipe from the theory is to protect
somehow the better than average individuals. This can be done in various ways in-
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cluding reducing the crossover probability in favour of cloning, using a form of elitism,
or adopting a steady state model.

In (McPhee and Poli, 2002) we have started using the schema theory developed in
this paper in conjunction to the theory for two types of mutation operators to under-
stand the complex interactions between operators. In particular we applied the schema
theory to variable length linear structures and a simple test problem (the one-then-
zeros problem, where strings starting with a 1 followed by Os are fit, all other strings
are not). We then showed how the results of integrating the schema equations for a
finite number of generations can be used to discover the relative probabilities of ap-
plication of the three operators which optimise certain performance criteria, such as
finding solutions in the shortest possible time, maximising the proportion of solutions
by the end of the run, maximising the proportion of solutions while at the same time
not allowing changes in mean program size, etc.. At this stage, we have applied the
approach only to one problem, and we have assumed that the population size is suf-
ficiently large that finite population effects are negligible for the duration of the runs
(50 generations). However, the results have been extremely promising and relevant to
practice (fully agreeing with the results of subsequent empirical validation).

Finally, in (Poli, 2003) we presented a simple method to control bloat which is a di-
rect result of the theoretical research in this paper. The idea is to appropriately modify
the selection probabilities in Equation 19 so as to discourage growth. We achieve this
by effectively creating dynamic and stochastic fitness “holes” in the GP fitness land-
scape, corresponding to offspring that have above average length. Since these repel the
population, bloat is kept under control.

8 Conclusions

In this two-part paper a general schema theory for genetic programming has been
presented. The theory includes two main results describing the propagation of GP
schemata: a microscopic schema theorem and a macroscopic one. The microscopic ver-
sion is applicable to crossover operators which replace a subtree in one parent with
a subtree from the other parent to produce the offspring. The macroscopic version is
valid for subtree-swapping crossover operators in which the probability of selecting
any two crossover points in the parents depends only on the parents’ size and shape.
Therefore, these theorems are very general and can be applied to model most GP sys-
tems used in practice.

Like other recent schema theory results (Stephens and Waelbroeck, 1997; Stephens
and Waelbroeck, 1999; Poli, 2000b; Poli, 2000a), our theory gives an exact formulation
(rather than a lower bound) for the expected number of instances of a schema at the
next generation. In the paper we have shown how the theory can be specialised to
obtain schema theorems for specific types of crossover operators. One special case
of this theory is the exact schema theorem for standard crossover, a result that has
been sought for many years as indicated by the efforts described in Section 2.1. In
addition we have shown how the theory can be used to obtain other general results,
such as an exact definition of effective fitness and a size-evolution equation for GP with
subtree-swapping crossover. Finally we have provided some examples which further
illustrate how the theory can be used to compare the behaviour of different crossover
operators and how, on the assumption of infinite populations, the theory’s equations
can be numerically iterated so as to give long term predictions of the behaviour of a GP
system and to understand the biases of the operators.

Exact schema theories for genetic programming are quite recent developments.
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After the breakthrough obtained with the introduction of hyperschema in (Poli, 2000b;
Poli, 2000a), our theoretical efforts have been focussed on formulating exact models for
GP for a variety of operators. This paper is the result of these efforts for the very impor-
tant case of subtree swapping operators, but exact equations for other operators have
also been obtained (e.g. for different types of subtree mutation and headless chicken
crossover (Poli and McPhee, 2001a; McPhee et al., 2001) and for the class of homolo-
gous crossovers (Poli and McPhee, 2001c)). So, from the theoretical point of view, GP
schema theorems have proven to be a very flexible modelling tool.

Theory always seems to lag behind practice. The theory described in the paper
aimed at overcoming this problem by modelling GP systems which are actually used
in practice. We believe we have achieved this and we have used the resulting models to
gain a deeper understanding of the biases of GP operators and the dynamics of GP pop-
ulations. The number and scope of these results seem to indicate the theoretical value
of schema-based approaches. However, the understanding gained through schema-
theoretic studies is not only important for its own sake. It has also a lot to feed back
into practice, for example by suggesting initialisation strategies, anti-bloat measures
and, remarkably, even helping choose optimal operator combinations and parameter
settings for specific problems as discussed in Section 7. In the future we hope many
more useful results of this kind will follow, hopefully obtained not just by us, but by
other researchers who will, too, want to embrace the ideas behind schema-theoretic
approaches.
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