A Corpus-Based Investigation of Definite Description Use

Massimo Poesio
poesio@cogsci.ed.ac.uk

Renata Vieira
renata@cogsci.ed.ac.uk

Centre for Cognitive Science
The University of Edinburgh
2 Buccleuch Place
Edinburgh EH8 9LW, UK

Abstract
We present the results of a study of definite descriptions use in written texts aimed at assessing the feasibility of annotating corpora with information about definite description interpretation. We ran two experiments, in which subjects were asked to classify the uses of definite descriptions in a corpus of 33 newspaper articles, containing a total of 1412 definite descriptions. We measured the agreement among annotators about the classes assigned to definite descriptions, as well as the agreement about the antecedent assigned to those definites that the annotators classified as being related to an antecedent in the text. The most interesting result of this study from a corpus annotation perspective was the rather low agreement (K=0.63) that we obtained using versions of Hawkins' and Prince's classification schemes; better results (K=0.76) were obtained using the simplified scheme proposed by Fraurud that includes only two classes, first-mention and subsequent-mention. The agreement about antecedents was also not complete. These findings raise questions concerning the strategy of evaluating systems for definite description interpretation by comparing their results with a standardized annotation. From a linguistic point of view, the most interesting observations were the great number of discourse-new definites in our corpus (in one of our experiments, about 50% of the definites in the collection were classified as discourse-new, 30% as anaphoric, and 18% as associative/bridging) and the presence of definites which did not seem to require a complete disambiguation.

This paper will appear in Computational Linguistics.
1 Introduction

The work presented in this paper was inspired by the growing realization in the field of computational linguistics of the need for an experimental evaluation of linguistic theories—semantic theories, in our case. The evaluation we are considering typically takes the form of experiments in which humans subjects are asked to annotate texts from a corpus (or recordings of spoken conversations) according to a certain classification scheme, and the agreement among their annotations is measured (see, e.g., (Passonneau and Litman, 1993) or the papers in (Moore and Walker, 1997)). These attempts at an evaluation are, in part, motivated by the desire to put these theories on a more ‘scientific’ footing by ensuring that the semantic judgments on which they are based reflect the intuitions of a large number of speakers; but experimental evaluation is also seen as a necessary precondition for the kind of system evaluation done, e.g., in the Message Understanding initiative (MUC), where the performance of a system is evaluated by comparing its output on a collection of texts with a standardized annotation of those texts produced by humans (Chinchor and Sundheim, 1995). Clearly, a MUC-style evaluation presupposes an annotation scheme on which all participants agree.

Our own concern are semantic judgments concerning the interpretation of noun phrases with the definite article the, that we will call definite descriptions, following (Russell, 1919). These noun phrases are one the most common constructs in English, and have been extensively studied by linguists, philosophers, psychologists, and computational linguists (Russell, 1905; Christoffersen, 1939; Strawson, 1950; Clark, 1977; Gruzd, 1997; Cohen, 1978; Hawkins, 1978; Sidner, 1979; Webber, 1979; Clark and Marshall, 1981; Prince, 1981; Heim, 1982; Appelt, 1985; Lübnner, 1985; Kadmon, 1987; Carter, 1987; Bosch and Geurts, 1989; Neale, 1990; Kronfeld, 1990; Fraudrud, 1990; Barker, 1991; Dale, 1992; Cooper, 1993; Kamp and Reyle, 1993; Poesio, 1993).

Theories of definite descriptions such as (Christoffersen, 1939; Hawkins, 1978; Webber, 1979; Prince, 1981; Heim, 1982) identify two subtasks involved in the interpretation of a definite description: deciding whether the definite description is related to an antecedent in the text—which in turn may involve recognizing fairly fine-grained distinctions—and, if so, identifying this antecedent. Some of these theories have been cast in the form of classification schemes (Hawkins, 1978; Prince, 1992), and have been used for corpus analysis (Prince, 1992).

1 E.g., recent work in linguistics shows that the agreement with a theory's predictions may be a matter of how well the actual behavior distributes around the predicted behavior, rather than an all-or-nothing affair (Bard, Robertsohn, and Sonace, 1996).
2 We will not be concerned with other cases of definite noun phrases such as pronouns, or possessive descriptions; hence the term definite description rather than the more general term definite NP.
3 The word the is by far the most common word in the Brown corpus (Francis and Kučera, 1982), the LOB corpus (Johansson and Hoffland, 1989), and the TRAINS corpus (Heeman and Allen, 1995).
4 We concentrated on written texts in this study. See discussion below.
1981; Prince, 1992; Fraurud, 1990); yet, we are aware of no attempt at verifying whether non linguistically trained subjects are capable of recognizing the proposed distinctions, which is a precondition for using these schemes for the kind of large-scale text annotation exercises which are necessary to evaluate a system's performance as done in MUC.

In the past two or three years, this kind of verification has been attempted for other aspects of semantic interpretation; e.g., by (Passonneau and Litman, 1993) for segmentation and by (Kowtko, Isard, and Doherty, 1992; Carletta et al., 1997) for dialogue act annotation. Our intention was to do the same for definite descriptions. We ran two experiments to test how good are naive subjects at doing the form of linguistic analysis presupposed by current schemes for classifying definite descriptions. (Where by 'how good' here we mean 'how much do they agree among themselves', as commonly assumed in work of this kind.) Our subjects were asked to classify the definite descriptions found in a corpus of natural language texts according to classification schemes that we developed starting from the taxonomies proposed by Hawkins (1978) and Prince (1981; 1992), but which took into account our intention of letting 'naive' speakers perform the classification. Our experiments were also designed to assess the feasibility of a system to process definite descriptions on unrestricted text and to collect data that could be used for this implementation. For both of these reasons, the classification schemes that we tried differ in several respects from those adopted in prior corpus-based studies such as (Prince, 1981; Fraurud, 1990). Our study is also different from these previous ones in that measuring the agreement among annotators became an issue (Carletta, 1996).

We used for the experiments a set of randomly selected articles from the Wall Street Journal contained in the ACL/DCI CD-ROM, rather than a corpus of transcripts of spoken language corpora such as the HCRC MAP/Task corpus (Anderson et al., 1991) or the TRAINS corpus (Heeman and Allen, 1995). The main reason for this choice was to avoid dealing with deictical uses of definite descriptions and with phenomena such as reference failure and repair. A second reason was that we intended to use computer simulations of the classification task to supplement the results of our experiments, and we needed a parsed corpus for this purpose; the articles we chose were all part of the Penn Treebank (Marcus et al., 1993).

The organization of the paper is as follows. We review two existing classification schemes in section §2; we then discuss our two classification experiments in sections §3 and §4, respectively.

5 Both Prince's and Fraurud's studies are analyses of the use of the whole range of definite NP, not just of definite descriptions.
2 Towards a Classification Scheme: Linguistic Theories of Definite Descriptions

When looking for an annotation scheme for definite descriptions, one is faced with a wide range of options. On the one end of the spectrum there are mostly descriptive lists of definite description uses such as those in (Christophersen, 1939; Hawkins, 1978), whose only goal is to assign a classification to all uses of definite descriptions. On the other end there are highly developed formal analyses such as (Russell, 1905; Heim, 1982; Løbner, 1985; Kadmon, 1987; Neale, 1990; Barker, 1991; Kamp and Reyle, 1993), in which the compositional contribution of definite descriptions to the meaning of an utterance, as well as their truth-conditional properties, are spelled out in detail. These more formal analyses are concerned with questions such as the quantificational or non-quantificational status of definite descriptions and the proper treatment of presuppositions, but tend to concentrate on a subset of the full range of definite description use. Among the more developed semantic analyses, some identify uniqueness as the defining property of definite descriptions (Russell, 1905; Neale, 1990), whereas others take familiarity as the basis for the analysis (Christophersen, 1939; Hawkins, 1978; Heim, 1982; Prince, 1981; Kamp and Reyle, 1993). We will say more about some of these analyses below.

Our choice of a classification scheme was in part dictated by the intended use of the annotation, in part by methodological considerations. A crucial property of an annotation used to evaluate the performance of a system is that it ought to identify the anaphoric connections between discourse entities; this makes familiarity-based analyses more attractive. From a methodological point of view, it was important to choose an annotation scheme that (i) would make the classification task doable by non-linguistically trained subjects, and (ii) had already been applied to the task of corpus analysis. We felt that we could ask naïve subjects to assign each definite description to one of a few classes and to identify its antecedent when appropriate; we also wanted an annotation scheme that would characterize the whole range of definite description use, so that we would not need to worry about eliminating definite descriptions from our texts because ‘unclassifiable’.

For these reasons we chose Hawkins’ list of definite description uses (Hawkins, 1978) and Prince’s taxonomy (Prince, 1981; Prince, 1992) as our starting point, and we developed from these two slightly different annotation schemes, which allowed us to see whether it was better to describe the classes to our annotators in a surface-oriented or a semantic fashion, and to evaluate the seriousness of the problems with these schemes identified in the literature (see, e.g., (Fraurud, 1990)). We discuss Hawkins’ and Prince’s taxonomies next.
2.1 The Christophersen / Hawkins' List of Definite Description Uses

The wide range of uses of definite descriptions was already highlighted in (Christophersen, 1939). In the third chapter of his book, Hawkins (1978) further develops and extends Christophersen's list. He identifies the following classes, or 'uses,' of definite descriptions:

Anaphoric Use

These are definite descriptions that co-specify with a discourse entity already introduced in the discourse. The definite description may use the same descriptive predicate as its antecedent, or any other capable of indicating the same antecedent (e.g., a synonym, a hyponym, etc.).

(1) a. Fred was discussing an interesting book in his class. I went to discuss the book with him afterwards.

b. Bill was working at a lathe the other day. All of a sudden the machine stopped turning.

c. Fred was wearing trousers. The pants had a big patch on them.

d. Mary travelled to Paris. The journey lasted six hours.

e. A man and a woman entered restaurant. The couple was received by a waiter.

Immediate Situation Uses

The next two uses of definite descriptions identified by Hawkins are occurrences used to refer to an object in the situation of utterance. The referent may be visible, or its presence may be inferred. The visible situation use occurs when the object referred to is visible to both speaker and hearer, as in the following examples:

(2) a. Please, pass me the salt.

There are some complex terminological problems when discussing anaphoric expressions. Following standard terminology, we will use the term referent to indicate the object in the world that is contributed to the meaning of an utterance by a definite description—e.g., we will say that Bill Clinton is the referent of a referential use of the definite description the president of the USA in 1997. We will then say, following Sider's terminology (Sider, 1979), that a definite description co-specifies with its antecedent in a text, when such antecedent exists, if the definite description and its antecedent denote the same object. This is probably the most precise way of referring to the relation between an anaphoric expression and its antecedent; note that two discourse entities can co-specify without referring to any object in the world—e.g., in The (current) king of France is bald. He has a double chin, as well, he co-specifies with the (current) king of France, but this latter expression does not refer to anything. However, since we will mostly be concerned with referential discourse entities, we will often use the term corefer instead of co-specify. Apart from this, we have tried to avoid more complex issues of reference insofar as possible (Dowellian, 1972; Kripke, 1977; Barwise and Perry, 1983; Neale, 1990; Kroefeld, 1990).
b. Don’t break the case.

Hawkins classifies as **immediate situation uses** those definite descriptions whose referent is a constituent of the immediate situation in which the use of the definite description is located, without necessarily being visible.

(3) a. Beware of the dog.
 b. Don’t feed the pony.
 c. You can put your coat on the clothes peg.
 d. Mind the step.

Larger Situation Uses

Hawkins lists then two uses of definite descriptions characteristic of situations in which the speaker appeals to the hearer’s knowledge of entities which exist in the non-immediate or larger situation of utterance—knowledge they share by being members of the same community, for instance.

A definite description may rely on **specific knowledge about the larger situation**: this is the case in which both the speaker and the hearer know about the existence of the referent, as in the example below, in which it is assumed that speaker and hearer are both inhabitants of Halifax, a town which has a gibbet at the top of Gibbet Street:

(4) The Gibbet no longer stands.

Specific knowledge is not, however, a necessary part of the meaning of larger situation uses of definite descriptions. While some hearers may have specific knowledge about the actual individuals referred to by a definite description, others may not. General knowledge about the existence of certain types of objects in certain types of situations is sufficient. Hawkins classifies those definite descriptions which depend on this knowledge as instances of **general knowledge in the larger situation use**. An example is the following utterance in the context of a wedding:

(5) Have you seen the bridesmaids?

Such a first-mention of the bridesmaids is possible on the basis of the knowledge that weddings typically have bridesmaids. In the same way, a first-mention of the bride, the church service, or the best man would be possible.

Associative Anaphoric Use

Speaker and hearer may have (shared) knowledge of the relations between certain objects (the **triggers**) and their components or attributes (the **associates**): associative anaphoric uses of definite descriptions exploit this knowledge. Whereas in larger situation uses the trigger is the situation itself, in the associative anaphoric use the trigger is an **NP** introduced in the discourse.
(6) a. The man drove past our house in a car. The exhaust fumes were terrible.
 b. I am reading a book about Italian history. The author claims that
 Ludovico il Moro wasn’t a bad ruler. The content is generally
 interesting.
 c. I went to a wedding last weekend. The bride was a friend of
 mine. She baked the cake herself.

Unfamiliar Uses

Hawkins classifies as unfamiliar those definite descriptions which are not anaphoric,
do not rely on information about the situation of utterance, and are not associates of some trigger
in the previous discourse. Hawkins groups these definite descriptions in classes according to their
syntactic and lexical properties, as follows.

NP complements One form of unfamiliar definite descriptions is characterized
by the presence of a complement to the head noun.

(7) a. Bill is amazed by the fact that there is so much life on Earth.
 b. The philosophical aphasic came to the conclusion that language
did not exist.
 c. Fleet Street has been buzzing with the rumour that the Prime
 Minister is going to resign.
 d. I remember the time when I was a little girl.

Nominal modifiers The distinguishing feature of these phrases, according to
Hawkins, is the presence of a nominal modifier which refers to the class to
which the head noun belongs.

(8) a. I don’t like the colour red.
 b. The number seven is my lucky number.

Referent Establishing Relative Clauses Relative clauses may establish a referent
for the hearer without a previous mention, when the relative clause refers to
something mutually known.

(9) a. What’s wrong with Bill? Oh, the woman he went out with last
 night was nasty to him. (But: ?? Oh, the woman was nasty to
 him.)
 b. The box (that is) over there

Associative clauses Some definite descriptions can be seen as cases of bridging
references in which both the trigger and the associate are specified. The modifiers
of the head noun specify the set of objects with which the referent of the
definite description is associated.
(10) a. I remember the beginning of the war very well.
 b. There was a funny story on the front page of the Guardian this morning.
 c. ... the bottom of the sea.
 d. ... the fight during the war.

Unexplanatory Modifiers Use

Finally, Hawkins lists a small number of modifiers which require the use of the:

(11) a. My wife and I share the same secrets.
 b. The first person to sail to America was an Icelander.
 c. The fastest person to sail to America ...

2.2 The Semantics of Definite Descriptions

Some of the classes in the Christophersen / Hawkins classification are specified in a semantic fashion; other classes are defined in purely syntactic terms. It is natural to ask what these uses of definite descriptions have in common from a semantic point of view: for example, is there a connection between the 'unfamiliar' and the 'unexplanatory' uses of definite descriptions and the other uses? (The unfamiliar uses with associative clauses seem related to the associative anaphoric ones, and both to the uses based on referent establishing relative clauses.) Many authors, including Hawkins himself, have attempted to go beyond the purely descriptive list just discussed.

One group of authors have identified uniqueness as the defining property of definite descriptions. This idea goes back to (Russell, 1905), and is motivated by larger situation definite descriptions such as the pope and by some cases of unexplanatory modifier use such as the first person to sail to America. The hypothesis was developed in recent years (Kadmon, 1987; Neale, 1990; Cooper, 1993), in particular to address the problem of 'uniqueness within small situations'.

Another line of research is based on the observation that many of the uses of definite descriptions listed by Hawkins have one property in common: the speaker/writer is making some assumptions about what the hearer already knows. Speaking very loosely, we might say that the speaker assumes that the hearer is able to 'identify' the referent of the definite description. This is also true of some of the uses Hawkins classified as 'unfamiliar': for example, of his 'nominal modifiers' and 'associative clause' classes. Attempts at making this intuition more precise include Christophersen's familiarity theory (1939), Strawson's presuppositional theory of definite descriptions (Strawson, 1950), Hawkins' own location theory (Hawkins, 1978) and its revision, Clark

7Löbner generalizes this idea to good results in (Löbner, 1985); we will return on this work later.
and Marshall's theory of definite reference and mutual knowledge (Clark and Marshall, 1981), as well as more formal proposals such as (Heim, 1982).

Neither the uniqueness nor the familiarity approach have yet succeeded in providing a satisfactory account of all uses of definite descriptions (Fraurud, 1990; Bimer and Ward, 1994). However, the theories based on familiarity address more directly the main concern of NLP system designers, which is to identify the connections between discourse entities. Furthermore, the prior corpus-based studies of definite descriptions use that we are aware of (Prince, 1981; Fraurud, 1990; Prince, 1992) are based on theories of this type. For both of these reasons, we adopted semantic notions introduced in familiarity-style accounts in designing our experiments—in particular, distinctions introduced in Prince's taxonomy.

2.3 Prince's Classification of Noun Phrases

Prince studied in detail the connection between a speaker / writer's assumptions about the hearer or reader and the linguistic realization of noun phrases (Prince, 1981; Prince, 1992). She criticizes as too simplistic the binary distinction between 'given' and 'new' discourse entities that is at the basis of most previous work on familiarity, and proposes a much more detailed taxonomy of 'givenness'—or, as she calls it, assumed familiarity—meant to address this problem. Also, Prince's analysis of noun phrases is closer than the Christoferson / Hawkins' taxonomy to a classification of definite descriptions on purely semantic terms; e.g., she relates 'unfamiliar' definites based on referent-establishing relative clauses with Hawkins' associative clause and associative anaphoric uses.8

Hearer New / Hearer Old

One factor affecting the choice of a noun phrase, according to Prince, is whether a discourse entity is old or new with respect to the hearer's knowledge. A speaker will use a proper name or a definite description when he or she assumes that the addressee already knows the entity whom the speaker is referring to, as in (12) and (13).

(12) I'm waiting for it to be noon so I can call Sandy Thompson.
(13) Nine hundred people attended the Institute.

On the other hand, if the speaker believes that the addressee does not know of Sandy Thompson, an indefinite will be used:

(14) I'm waiting for it to be noon so I can call someone in California.

8 Clark and Marshall (1981) also proposed a revision of Hawkins' theory that merges some of the classes on semantic grounds.
Discourse New / Discourse Old

In addition, discourse entities can also be new or old with respect to the discourse model: an NP may refer to an entity that has already been ‘evoked’ in the current discourse, or it may evoke an entity which has not been previously mentioned. ‘Discourse novelty’ is distinct from ‘Hearer novelty’: both Sandy Thompson in (12) and the someone in California mentioned in (14) may well be discourse-new even if only the second one will be hearer-old. On the other hand, for an entity being discourse old entails it being hearer old. In other words, in Prince’s theory the notion of ‘familiarity’ is split in two: familiarity with respect to the discourse, and familiarity with respect to the hearer. Either type of familiarity can license the use of definites: Hawkins’ anaphoric uses of definite descriptions are cases of noun phrases referring to discourse-old discourse entities, whereas his ‘larger situation’ and ‘immediate situation’ uses are cases of noun phrases referring to discourse-new, hearer-old entities.9

Inferrables

The uses of definite descriptions that Hawkins called associative anaphoric, such as a book... the author, are not discourse-old or even hearer-old, but they are not entirely new, either; as Hawkins pointed out, the hearer is assumed to be capable to infer their existence. Prince called these discourse entities inferrables. (This is the class of definite descriptions for which Clark (1977) used the term bridging references.)

Containing Inferrables

Finally, Prince proposes a category for noun phrases that are like inferrables, but whose connection with previous hearer’s knowledge is specified as part of the noun phrase itself—her example is the door of the Bastille in the following example:

(15) The door of the Bastille was painted purple.

At least three of the ‘unfamiliar uses’ of Hawkins—NP complements, referent-establishing relative clauses, and associative clauses—fall in this category. (See also (Clark and Marshall, 1981).)

2.4 Some Remarks about Coverage

Perhaps the most important question concerning a classification scheme is its coverage. The two taxonomies we have just seen are largely satisfactory in this respect, but a couple of issues are worth mentioning.

9 In Clark and Marshall’s (1981) terminology, one would say that different co-presence heuristics can be used to establish mutual knowledge.
First of all, Prince’s taxonomy does not give us a complete account of the licensing conditions for definite descriptions. Of the uses mentioned by Hawkins, the unfamiliar definites with unexplanatory modifiers and NP complements need not satisfy any of the conditions that license the use of definites according to Prince: these definites are not necessarily discourse-old, hearer-old, inferrables, or containing inferrables. These uses fall outside of Clark and Marshall’s classification, as well.

Secondly, none of the classification schemes just discussed, nor any of the alternatives proposed in the literature, consider so-called generic uses of definite descriptions, such as the use of the tiger in the generic sentence The tiger is a fierce animal that lives in the jungle. The problem with these uses is that the very question of whether the ‘referent’ is familiar or not seems misplaced—these uses are not ‘referential’. A problem related to the one just mentioned is that certain uses of definite descriptions are ambiguous between a referential and an attributive interpretation (Donnellan, 1972). The sentence The first person to sail to America was an Icelander, for example, can have two interpretations: the writer may either refer to a specific person, whose identity may be mutually known to both writer and reader; or he/she may be simply expressing a property that is true of the first person to sail to America, whoever that person happened to be. This ambiguity does not seem to be possible with all uses of definite descriptions: e.g., pass me the salt only seem to have a referential use. Again, the schemes we have presented do not consider this issue. The question of how to annotate generic uses of definite descriptions or uses that are ambiguous between a referential and an attributive use will not be addressed in this paper.

2.5 Fraurud’s Study

A second problem with the classification schemes we have discussed was raised by Fraurud in her study of definite NPs in a corpus of Swedish text (Fraurud, 1990). Fraurud introduced a drastically simplified classification scheme based on two classes only: subsequent mention, corresponding to Hawkins’ anaphoric definite descriptions and Prince’s discourse-old, and first-mention, including all other definite descriptions.

Faurud simplified matters in this way because she was primarily interested in verifying the empirical basis for the claim that familiarity is the defining property of definite descriptions; she also observed, however, that some of the distinctions introduced by Hawkins and Prince led to ambiguities of classification. For example, she observed that the reader of a Swedish newspaper can equally well interpret the definite description the king in an article about Sweden by reference to the larger situation or to the content of the article.

We took into account Fraurud’s observations in designing our experiments, and we will compare our results to hers below.
3 A First Experiment in Classification

For our first experiment at evaluating subjects' performance at the classification task, we developed a taxonomy of definite description uses based on the schemes discussed in the previous section, preliminarily tested the taxonomy by annotating the corpus ourselves, and then asked two annotators to do the same task. This first experiment is described in the rest of this section. We explain, first, the classification we developed for this experiment, then the experimental conditions, and finally discuss the results.

3.1 The First Classification Scheme

The annotation schemes for noun phrases proposed in the literature fall in one of two categories. On the one hand, we have what we might call 'labeling' schemes, most typically used by corpus linguists, which involve assigning to each noun phrase a class such as those discussed in the previous section; the schemes used by Fraun and Prince fall in this category. On the other hand, there are what we might call 'linking' schemes, concerned with identifying the links between the discourse entity or entities introduced by a noun phrase and other entities in the discourse; the scheme used in MUC-6 is of this type.

In our experiments, we tried both a purely labeling scheme and a mixture of a labeling and a linking scheme. We also tried two slightly different taxonomies of definite descriptions, and we varied the way membership in a class was defined to the subjects. Both taxonomies were based on the schemes proposed by Hawkins and Prince, but we introduced some changes in order, first, to find a scheme that would be easily understood by individuals without previous linguistic training and would lead to maximum agreement among the classifiers; and second, to make the classification more useful for our goal of feeding the results into an implementation.

In the first experiment, we used a labeling scheme, and the classes were introduced to the subjects with reference to the surface characteristics of the definite descriptions. (See below and Appendix A.) The taxonomy we used in this experiment is a simplification of Hawkins' scheme, to which we made three main changes. First of all, we separated those anaphoric descriptions whose antecedents have the same descriptive content as their antecedent (which we will call anaphoric (same head)) from other cases of anaphoric descriptions in which the association is based on more complex forms of lexical or commonsense knowledge (synonyms, hypernyms, information about events, etc.). We grouped these latter definite descriptions with Hawkins' associative descriptions in a class that we called associative. This was done in order to see how much need there is for complex lexical inferences in resolving anaphoric definite descriptions, as opposed to simple head matching.

Secondly, we grouped together all the definite descriptions which introduce a novel discourse entity not associated to some previously established object
in the text, i.e., that were discourse-new in Prince's sense. This class, that we will call large situation / unfamiliar, includes both definite descriptions that exploit situational information (Hawkins' larger situation uses) and discourse-new definite descriptions introduced together with their links or referents (unfamiliar). This was done because of Fauconnier's observation that distinguishing the two classes is generally difficult (Fauconnier, 1990). Third, we did not include a class for immediate situation uses, since we assumed they would be rare in written text. We also introduced a separate class of idioms including indirect references, idiomatic expressions and metaphorical uses, and we allowed our subjects to mark definite descriptions as doubts.

To summarize, the classes used in this experiment were as follows.

I. Anaphoric same head

This class includes uses of definite descriptions which refer back to an antecedent introduced in discourse; it differs from Hawkins' 'anaphoric use' or Prince's 'textually evoked' classes because it only includes definite-antecedent pairs with the same head noun.

(18) Grace Energy just two weeks ago hauled a rig here 500 miles from Caspar, Wyo., to drill the Bilbrey well, a 15,000-foot, $1-million-plus natural gas well. The rig was built around 1980, but has drilled only two wells, the last in 1982.

II. Associative

We assigned to this class those definite descriptions that stand in an anaphoric or associative anaphoric relation with an antecedent explicitly mentioned in the text, but that are not identified by the same head noun as their antecedent. This class includes Hawkins' associative anaphoric definite descriptions and Prince's inferables, as well as some definite descriptions that would be classified as anaphoric by Hawkins and as textually evoked in (Prince, 1981). Recognizing the antecedent of these definite descriptions involves at least knowledge of lexical associations, and possibly general commonsense knowledge.

10 This was indeed the case, but we did observe a few instances of an interesting kind of immediate situation use. In these cases, the text is describing the immediate situation in which the writer is, and the writer apparently expects the reader to reconstruct this situation:

(16) "And you didn't want me to buy earthquake insurance", says Mrs. Hammack, reaching across the table and gently tapping his hand.

(17) "I will sit down and talk some of the problems out, but take on the political system? Uh-uh", he says with a shake of the head.

11 See (Löbner, 1985; Barker, 1991; Poesio, 1994) for discussions of lexical conditions on bridging references.
(19) a. With all this, even the most wary oil men agree something has changed. "It doesn't appear to be getting worse," "That in itself has got to cause people to feel a little more optimistic," says Glenn Cox, the president of Phillips Petroleum Co. Though modest, the change reaches beyond the oil patch, too.

b. Toni Johnson pulls a tape measure across the front of what was once a stately Victorian home. A deep trench now runs along its north wall, exposed when the house lurched two feet off its foundation during last week's earthquake.

c. Once inside, she spends nearly four hours measuring and diagramming each room in the 80-year-old house, gathering enough information to estimate what it would cost to rebuild it. While she works inside, a tenant returns with several friends to collect furniture and clothing. One of the friends sweeps broken dishes and shattered glass from a countertop and starts to pack what can be salvaged from the kitchen.

III. Larger situation/unfamiliar

This class includes Hawkins' larger situation uses of definite descriptions based on specific and general knowledge (discourse-new, hearer-old in Prince's terms) as well as his unfamiliar uses (many of which correspond to Prince's containing inferables).

(20) a. Out here on the Querecho Plains of New Mexico, however, the mood is more upbeat. Trucks rumble along the dusty roads and burly men in hard hats sweat and swear through the afternoon sun.

b. Norton Co. said net income for the third quarter fell 6% to $20.6 million, or 98 cents a share, from $22 million, or $1.03 a share.

c. For the Parks and millions of other young Koreans, the long-cherished dream of home ownership has become a cruel illusion. For the government, it has become a highly volatile political issue.

d. About the same time, the Iran-Iraq war, which was nailing oil markets, ended.

IV. Idiom

This class includes indirect references, idiomatic expressions and metaphorical uses.

(21) A recession or new OPEC blowup could put oil markets right back in the soup.
3.2 Experimental Conditions

First of all, we classified ourselves the definite descriptions included in 20 randomly chosen articles from the Wall Street Journal contained in the subset of the Penn Treebank corpus included in the ACL/DCI CD-ROM.12 All together, these articles contain 1040 instances of definite description use. The results of our analysis are summarized in Table 1.

<table>
<thead>
<tr>
<th>Class</th>
<th>Total Number</th>
<th>Percentage of the total</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Anaphoric s. h.</td>
<td>304</td>
<td>29.23%</td>
</tr>
<tr>
<td>II. Associative</td>
<td>193</td>
<td>18.55%</td>
</tr>
<tr>
<td>III. LS/Unfamiliar</td>
<td>503</td>
<td>48.37%</td>
</tr>
<tr>
<td>IV. Idiom</td>
<td>26</td>
<td>2.50%</td>
</tr>
<tr>
<td>V. Doubt</td>
<td>14</td>
<td>1.35%</td>
</tr>
<tr>
<td>Total</td>
<td>1040</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 1: Classification by the authors of the definite descriptions in the first corpus

Next, we asked 2 subjects to perform the same task. Our two subjects in this first experiment were graduate students in Linguistics. The two subjects were given the instructions in Appendix A. They had to assign each definite description to one of the classes described in §3.1: I. anaphoric (same head), II. associative, III. larger situation / unfamiliar, and IV. idiom. The subjects could also express V. 'doubt' about the classification of the definite description. Since the classes I-III are not mutually exclusive, we instructed the subjects to resolve conflicts according to a preference ranking, i.e., to choose a class with higher preference when two classes seemed equally applicable. The ranking was (from most preferred to least preferred): 1) anaphoric (same head), 2) larger situation / unfamiliar, and 3) associative. The annotators were given one text to familiarize themselves with the task before starting with the annotation proper.

3.3 Results

The distribution of definite descriptions in classes

The results of the first annotator (henceforth, 'Annotator A') are shown in Table 2, and those of the second annotator (henceforth, 'Annotator B') in Table 3.

As the tables indicate, the annotators and us assigned approximately the same percentage of definite descriptions to each of the five classes; however, the classes do not always include the same elements. This can be gathered by

12The texts in question are w0203, w0207, w0209, w0301, w0305, w0725, w0760, w0761, w0765, w0766, w0767, w0800, w0803, w0804, w0808, w0820, w1108, w1122, w1124, and w1137.
<table>
<thead>
<tr>
<th>Class</th>
<th>Total Number</th>
<th>Percentage of the total</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Anaphoric s. h.</td>
<td>294</td>
<td>28.27%</td>
</tr>
<tr>
<td>II. Associative</td>
<td>160</td>
<td>15.38%</td>
</tr>
<tr>
<td>III. Unfamiliar/Larger Situation</td>
<td>546</td>
<td>52%</td>
</tr>
<tr>
<td>IV. Idiom</td>
<td>39</td>
<td>3.75%</td>
</tr>
<tr>
<td>V. Doubt</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>Total</td>
<td>1040</td>
<td>100%</td>
</tr>
</tbody>
</table>

Table 2: Classification of definite descriptions according to Annotator A.

<table>
<thead>
<tr>
<th>Class</th>
<th>Total Number</th>
<th>Percentage of the total</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Anaphoric s. h.</td>
<td>332</td>
<td>31.92%</td>
</tr>
<tr>
<td>II. Associative</td>
<td>150</td>
<td>14.42%</td>
</tr>
<tr>
<td>III. Unfamiliar/Larger Situation</td>
<td>549</td>
<td>52.78%</td>
</tr>
<tr>
<td>IV. Idiom</td>
<td>2</td>
<td>0.19%</td>
</tr>
<tr>
<td>V. Doubt</td>
<td>7</td>
<td>0.67%</td>
</tr>
<tr>
<td>Total</td>
<td>1040</td>
<td>100%</td>
</tr>
</tbody>
</table>

Table 3: Classification of definite descriptions according to Annotator B.

the confusion matrix in Table 4, where an entry $m_{x,y}$ indicates the number of definite descriptions assigned to class x by subject A and to class y by subject B.

In order to measure the agreement in a more precise way, we used the so-called **Kappa Statistic** (Siegel and Castellan, 1988), recently proposed by Carletta as a measure of agreement for discourse analysis (Carletta, 1996). We also used a measure of per-class agreement that we introduced ourselves. We discuss these results below, after reviewing briefly how K is computed.

<table>
<thead>
<tr>
<th></th>
<th>I.</th>
<th>II.</th>
<th>III.</th>
<th>IV.</th>
<th>V.</th>
<th>Total B</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Anaphoric</td>
<td>274</td>
<td>26</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>332</td>
</tr>
<tr>
<td>II. Associative</td>
<td>9</td>
<td>97</td>
<td>44</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>III. LS/Unfamiliar</td>
<td>8</td>
<td>37</td>
<td>465</td>
<td>38</td>
<td>1</td>
<td>549</td>
</tr>
<tr>
<td>IV. Idiom</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>V. Doubt</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>Total A</td>
<td>294</td>
<td>160</td>
<td>546</td>
<td>39</td>
<td>1</td>
<td>1040</td>
</tr>
</tbody>
</table>

Table 4: Confusion matrix of A and B’s classifications.
The Kappa Statistic

Kappa is a test suitable for the cases when the subjects have to assign items to one of a set of non-ordered classes. The test computes a coefficient 'K' of agreement among coders which takes into account the possibility of chance agreement. It is dependent on the number of coders, number of items being classified, and number of choices of classes to be ascribed to items.

The kappa coefficient of agreement between \(k \) annotators is defined as

\[
K = \frac{P(A) - P(E)}{1 - P(E)}
\]

where \(P(A) \) is the proportion of times the annotators agree and \(P(E) \) is the proportion of times that we would expect the annotators to agree by chance. When there is complete agreement among the raters, \(K = 1 \); if there is no agreement other than that expected by chance, \(K = 0 \). According to Carletta, in the field of content analysis—where the Kappa statistic originated—\(K > 0.8 \) is generally taken to indicate good reliability, whereas 0.68 \(\leq K < 0.8 \) allows tentative conclusions to be drawn.

We will illustrate the method for computing \(K \) proposed in (Siegel and Castellan, 1988) by means of an example from one of our texts, shown in Table 5.

<table>
<thead>
<tr>
<th>Definite description</th>
<th>ASH</th>
<th>ASS</th>
<th>LSU</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. the third quarter</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2. the abrasives, engineering materials and petroleum services concern</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0.33</td>
</tr>
<tr>
<td>3. The company</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4. the year-earlier quarter</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0.33</td>
</tr>
<tr>
<td>5. the tax credit</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>6. the engineering materials segment</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>7. the possible sale of all or part of Eastman Christensen</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>8. the nine months</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>9. the year-earlier period</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0.33</td>
</tr>
<tr>
<td>10. the company</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>11. the company</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>12. the company</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>13. the company</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>N=13</td>
<td>ASH=16</td>
<td>ASS=10</td>
<td>LSU=13</td>
<td>Z=10</td>
</tr>
</tbody>
</table>

Table 5: Exemplification of the Kappa test
The first column in Table 5 (Definite description) shows the definite description being classified. The columns ASH, ASS, and LSU stand for the classification options presented to the subjects (anaphoric (same head), associative, and larger situation / unfamiliar, respectively). The numbers in each n_{ij} entry of the matrix indicate the number of classifiers that assigned the description in row i to the class in column j. The final column (labelled S) represents the percentage agreement for each definite description; we explain below how this percentage agreement is calculated. The last row in the table shows the total number of descriptions (N), the total number of descriptions assigned to each class and, finally, the total percentage agreement for all descriptions (Z).

The equations for computing S_i, PE, PA, and K are shown in Table 6. In these formulas, c is the number of coders; S_i the percentage agreement for description i (we show S_1 and S_2 as examples); m the number of categories; T the total number of classification judgments; PE the percentage agreement expected by chance; PA the total agreement, and K is the Kappa coefficient.

\[S_i = \frac{1}{c(c - 1)} \sum_{j=1}^{m} n_{ij}(n_{ij} - 1) \]
\[S_1 = \frac{1}{3(2)} \times [0 + 0 + 3(2)] = \frac{1}{6} \times 6 = 1 \]
\[S_2 = \frac{1}{6} \times [0 + 2(1) + 1(0)] = \frac{1}{6} \times 2 = 0.33 \]

\[T = 39 \]

\[PE = (ASH/T)^2 + (ASS/T)^2 + (LSU/T)^2 \]
\[= (16/39)^2 + (10/39)^2 + (13/39)^2 \]
\[= 0.17 + 0.07 + 0.11 = 0.35 \]

\[PA = Z/N = 10/13 = 0.77 \]

\[K = (PA - PE)/(1 - PE) = (0.77 - 0.35)/(1 - 0.35) = 0.42/0.65 = 0.65 \]

Table 6: Computing the K coefficient of agreement.

Value of K for the first experiment

For the first experiment, $K=0.68$ if we count idioms as a class, $K=0.73$ if we take them out. The overall coefficient of agreement between the two annotators and our own analysis is $K=0.68$ if we count idioms, $K=0.72$ if we ignore them.
<table>
<thead>
<tr>
<th>Class</th>
<th>Total</th>
<th>Comparisons</th>
<th>Agree</th>
<th>Disagree</th>
<th>% Agreement</th>
</tr>
</thead>
<tbody>
<tr>
<td>I, Anaphoric s. h.</td>
<td>930</td>
<td>1860</td>
<td>1646</td>
<td>214</td>
<td>88%</td>
</tr>
<tr>
<td>II, Associative</td>
<td>503</td>
<td>1006</td>
<td>596</td>
<td>410</td>
<td>59%</td>
</tr>
<tr>
<td>III, LS/Unfamiliar</td>
<td>1598</td>
<td>3196</td>
<td>2684</td>
<td>512</td>
<td>84%</td>
</tr>
<tr>
<td>IV, Idiom</td>
<td>67</td>
<td>134</td>
<td>42</td>
<td>92</td>
<td>31%</td>
</tr>
<tr>
<td>V, Doubt</td>
<td>22</td>
<td>44</td>
<td>2</td>
<td>42</td>
<td>4%</td>
</tr>
</tbody>
</table>

Table 7: Per-class agreement in Experiment 1.

Per-class agreement

K gives a 'global' measure of agreement. We also wanted to measure the agreement per class, i.e., to understand where annotators agreed the most and where they disagreed the most. The confusion matrix does this to some extent, but only works for two annotators—and therefore, for example, we couldn't use it to measure agreement on classes between the two annotators and ourselves.

We computed what we called 'per-class percentage of agreement' for three coders (the two annotators and ourselves) by taking the proportion of pairwise agreements relative to the number of pairwise comparisons, as follows: whenever all three coders ascribe a description to the same class, we count 6 pairwise agreements out of 6 pairwise comparisons for that class - 100%. If two coders ascribe a description to class 1 and the other coder to class 2, we count two agreements in four comparisons for class 1 (50%) and no agreement for class 2 (0%). The rates of agreement for each class thus obtained are presented in Table 7. The figures indicate better agreement on anaphoric same-head and larger situation / unfamiliar definite descriptions, worse agreement on the other classes. (In fact, the percentages for idioms and doubts are very low; but these classes are also too small to allow us to draw any conclusions.)

3.4 Discussion of the results

Distribution

One of the most interesting results of this first experiment is that a large proportion of the definite descriptions in our corpus (48.37%, according to our own annotation; more, according to our two annotators) are not related to an antecedent previously introduced in the text. Surprising as it may seem, this finding is in fact just a confirmation of the results of other researchers. (Faurud, 1990) reports that 60.9% of definite descriptions in her corpus of 11 Swedish texts are 'first-mention', i.e., do not co-refer with an entity already evoked in the text;13 (Gallaway, 1996) found a distribution similar to ours in (English) spoken child language.

13As mentioned above, Faurud's first-mention class consists of Prince's discourse-new, inferences, and containing inferences.
Disagreements Among Annotators

The second notable result was the relatively low agreement among annotators. The reason for this disagreement was not so much annotators’ errors as the fact, already mentioned, that the classes are not mutually exclusive. The confusion matrix in Table 4 indicates that the major classes of disagreements were definite descriptions classified by annotator A as larger situation and by annotator B as associative, and vice versa. One such example is the government in (23). This definite description could be classified as larger situation because it refers to the government of Korea, and presumably the fact that Korea has a government is shared knowledge; but it could also be classified as being associative on the predicate Korans.14

(23) For the Parks and millions of other young Koreans, the long-cherished dream of home ownership has become a cruel illusion. For the government, it has become a highly volatile political issue.

We will analyze the reasons for the disagreement in more detail in relation to our second experiment, in which we also asked the annotators to indicate the antecedent of definite descriptions (see below).

Surface Indicators of Discourse Novelty

Examining the annotations produced in this experiment, we were able to confirm the correlation observed by Hawkins between the syntactic structure of certain definite descriptions and their classification as discourse-new. Factors that strongly suggest that a definite description is discourse-new (and in fact, presumably hearer-new as well) include the presence of modifiers such as first or best, and of a complement for NPs of the form the fact that ... or the conclusion that ...15 Post-nominal modification of any type is also a strong indicator of discourse novelty, suggesting that most post-nominal clauses serve to establish a referent in the sense discussed in the previous section. In addition, we observed a previously unreported (to our knowledge) correlation between discourse-novelty and syntactic constructions such as appositions, copular constructions, and comparatives. The following examples from our corpus illustrate the correlations just mentioned:

(24) a. Mr. Ramirez, who arrived late at the Sharpshooter with his crew because he had started early in the morning setting up tanks at another site, just got the first raise he can remember in eight years, to $8.50 an hour from $8.

b. Mr. Dinkins also has failed to allay Jewish voters’ fears about his association with the Rev. Jesse Jackson, despite the fact that

14 As discussed above, this problem with Hawkins’ and Prince’s classification schemes had already been noted by Fauvre—e.g., (Fauvre, 1990), page 416.

15 We will discuss an explanation for this correlation suggested in (Löbner, 1985).
few local non-Jewish politicians have been as vocal for Jewish causes in the past 20 years as Mr. Dinkins has.

C. They wonder whether he has the economic know-how to steer the city through a possible fiscal crisis, and they wonder who will be advising him.

d. The appetite for oil-service stocks has been especially strong, although some got hit yesterday when Shearson Lehman Hutton cut its short-term investment ratings on them.

e. After his decisive primary victory over Mayor Edward I. Koch in September, Mr. Dinkins coasted, until recently, on a quite comfortable lead over his Republican opponent, Rudolph Giuliani, the former crime buster who has proved a something of a bust as a candidate.

f. "The bottom line is that he is a very genuine and decent guy", says Malcolm Hoenlein, a Jewish community leader.

In addition, we observed a correlation between larger situation uses of definite descriptions (discourse-new, and often hearer-old) and certain syntactic expressions and lexical items. For example, we noticed that a large number of uses of definite descriptions in the corpus used for this first experiment referred to temporal entities such as the year or the month, or included proper names in place of the head noun or in premodiﬁer position, as in the Quercho Plains of New Mexico and the Iran-Iraq war. Although these definite descriptions would have been classiﬁed by Hawkins as 'larger situation' uses, in many cases they couldn't really be considered hearer-old or unused: what seems to be happening in these cases is that the writer assumed the reader would use information about the visual form of words, or perhaps lexical knowledge, to infer that an object of that name existed in the world.

We evaluated the strength of these correlations by means of a computer simulation (Veira and Poesio, 1997). The system attempts to classify the deﬁnite descriptions found in texts syntactically annotated according to the Penn Treebank format. The system classiﬁes a deﬁnite description as unfamiliar using heuristics based on the syntactic and lexical correlations just observed, i.e., if either (i) it includes an 'unexplanatory modiﬁer', (ii) it occurs in an apposition or a copular construction, or (iii) it is modiﬁed by a relative clause or prepositional phrase. A deﬁnite description is classiﬁed as 'larger situation' if its head noun is a temporal expression such as year or month, or if its head or premodiﬁers are head nouns. The implementation revealed that some of the correlations are very strong: for example, the agreement between the system's classiﬁcation and the annotators' on deﬁnite descriptions with a nominal complement, such as the fact that ... varied between 93% and 100% depending on the annotator; and on average, 70% of temporal expressions such as the year were interpreted as larger situation by the annotators.
All of this suggests that in using definite descriptions, writers may not make just assumptions about their readers' knowledge; they may also rely on their readers' ability to use lexical or syntactic cues to classify a definite description as discourse-new even when these readers don’t know about the particular object referred to already. This observation is consistent with Fraunrud’s hypothesis that interpreting definite descriptions involves two processes—deciding whether a definite description related to some entity in the discourse or not, and searching the antecedent—and that the two processes are fairly independent. Our findings also suggest that the classification process may rely on more than just lexical cues, as Fraunrud seems to assume (taking up a suggestion in Lõhnert, 1985), see below.

4 Second Experiment

In order to address some of the questions raised by Experiment 1 we set up a second experiment. In this second experiment we modified both the classification scheme and what we asked the annotators to do.

4.1 Revisions to the Annotators' Task

One concern we had in designing this second experiment was to understand better the reasons for the disagreement among annotators observed in the first experiment. In particular, we wanted to understand whether the classification disagreements reflected disagreements about the final semantic interpretation. Secondly, in this new experiment we structured the task of deciding on a classification for a definite description around a series of questions originating a decision tree, rather than giving our subjects an explicit preference ranking. A third aspect of the first experiment we wanted to study more carefully was the distribution of definite descriptions, in particular, the characteristics of the large number of definite descriptions in the large situation/unfamiliar class. Finally, we chose truly naive subjects to perform the classification task.

In order to get a better idea of the extent of agreement among annotators about the semantic interpretation of definite descriptions, we asked our subjects to indicate the antecedent in the text for the definite descriptions they classified as anaphoric or associative. This would also allow us to test how well subjects did with a ‘linking’ type of classification like the one used in MUC-6. We also replaced the anaphoric (same head) class we had in the first experiment with a broader co-referent class including all cases in which a definite description is co-referential with its antecedent, whether or not the head noun was the same: e.g., we asked the subjects to classify as co-referent a definite like the house referring back to an antecedent introduced as a Victorian home, which would not have counted as anaphoric (same head) in our first experiment. This resulted in a taxonomy which was at the same time
more semantically oriented and closer to Hawkins’ and Prince’s classification schemes: our broadened co-referent class coincides with Hawkins’ ‘anaphoric’ and Prince’s ‘textually evoked’ classes, whereas the resulting, narrower ‘associative’ class (that we called bridging references) coincides with Hawkins’ ‘associative anaphoric’ and Prince’s class of inferables. Our intention was to see whether the distinctions proposed by Hawkins and Prince would result in a better agreement among annotators than the taxonomy used in our first experiment, i.e., whether the subjects would be more in agreement about the semantic relation between a definite description and its antecedent than they were about the relation between the head noun of the definite description and the head noun of its antecedent.

The larger situation / unfamiliar class we had in the first experiment was split back in two classes, as in Hawkins’ and Prince’s schemes. We did this to see whether indeed these two classes were difficult to distinguish; we also wanted to get a clearer idea of the relative importance of the two kinds of definites that we had grouped together in the first annotation. The two classes were called larger-situation and unfamiliar.

4.2 Experimental Conditions

We used three subjects for Experiment 2. Our subjects were English native speakers, graduate students of Mathematics, Geography and Mechanical Engineering at the University of Edinburgh; we will refer to them as C, D, and E below. They were asked to annotate 14 randomly selected Wall Street Journal articles, all but one of them different from those used in Experiment 1, and containing 464 definite descriptions in total.¹⁶

Unlike in our first experiment, we did not suggest any relation between the classes and the syntactic form of the definite descriptions in the instructions. The subjects were asked to indicate whether the entity referred to by a definite description i) had been mentioned previously in the text, else if ii) it was new but related to an entity already mentioned in the text, else iii) it was new but presumably known to the average reader, or finally iv) it was new in the text and presumably new to the average reader.

When the description was indicated as discourse-old (i) or related to some other entity (ii), the subjects were asked to locate the previous mention of the related entity in the text. Unlike the first experiment, the subjects did not have the option to classify a definite description as ‘Idiom’; we instructed them to make a choice and write down their doubts. The written instructions and the script given to the subjects can be found in Appendix B. As in Experiment 1, the subjects were given one text to practice before starting with the analysis of the corpus. They took in average 8 hours to complete the task.

¹⁶The texts are w0766, w0j0003, w0j0013, w0j0015, w0j0018, w0j0020, w0j0021, w0j0022, w0j0024, w0j0026, w0j0029, w0j0034, w0j0037, and w0j0039.
Table 8: Coders' classification of definite descriptions in Experiment 2.

<table>
<thead>
<tr>
<th>Class</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>%</td>
<td>Total</td>
</tr>
<tr>
<td>I. Co-referential</td>
<td>205</td>
<td>44%</td>
<td>211</td>
</tr>
<tr>
<td>II. Bridging</td>
<td>40</td>
<td>8.5%</td>
<td>29</td>
</tr>
<tr>
<td>III. Latger situation</td>
<td>119</td>
<td>25.5%</td>
<td>115</td>
</tr>
<tr>
<td>IV. Unfamiliar</td>
<td>92</td>
<td>20%</td>
<td>82</td>
</tr>
<tr>
<td>V. Doubt</td>
<td>8</td>
<td>2%</td>
<td>27</td>
</tr>
<tr>
<td>Total</td>
<td>464</td>
<td>100%</td>
<td>464</td>
</tr>
</tbody>
</table>

4.3 Results

The distribution of definite descriptions in the four classes according to the three coders is shown in Table 8. We counted all the cases of doubt separately.

We had 283 cases of complete agreement among annotators on the classification (61%): 164 cases of complete agreement on co-referential definite descriptions, 7 cases of complete agreement on bridging, 65 cases of complete agreement on larger situation, and 47 cases of complete agreement on the unfamiliar class.

As in Experiment 1, we measured the K coefficient of agreement among annotators; the result for annotators C, D and E is K=0.58 if we consider the definite descriptions marked as ‘doubts’ (in which case we have 464 descriptions and five classes), K=0.63 if we leave them out (430 descriptions and the four classes I-IV).

We also measured the extent of agreement among subjects on the antecedents for co-referential and bridging definite descriptions. 164 descriptions were classified as co-referential by all three coders; of these, 155 (95%) were taken by all coders to refer to the same entity (although not necessarily to the same mention of that entity).

There were only 7 definite descriptions classified by all three annotators as bridging reference; in 5 of these cases (71%) the three annotators also agreed on a textual antecedent (i.e., on the discourse entity to which the bridging reference was related to).

4.4 Discussion

Distribution into classes

As shown in Table 8, the distribution of definite descriptions among discourse-new, on the one side, and co-referential with bridging references, one the other, is roughly the same in Experiment 2 as in Experiment 1, and roughly the same among annotators. The average percentage of discourse-new descriptions (larger
situation and unfamiliar together) is 46%, against an average of 50% in the first experiment. Having split the discourse-new class into two in this experiment, we got an indication of the relative importance of the hearer-old and hearer-new subclasses—about half of the discourse-new uses fall in each of these classes—but only very approximate, since the first two annotators classified the majority of these as larger-situation, whereas the last annotator classified the majority as unfamiliar.

As expected, the broader definition of the co-referent class resulted in a larger percentage of definite descriptions being included in this class (an average of 45%), and a smaller percentage being included in the bridging reference class. Considering the difference between the relative importance of the same-head anaphora class in the first experiment and of the co-referent class in the second experiment we can estimate that approximately 15% of definite descriptions are co-referential and have a different head from their antecedents.

Agreement among annotators

The agreement among annotators in Experiment 2 was not very high: 61% total agreement, which gives K=0.58 or K=0.63, depending on whether we consider doubts as a class.\(^\text{17}\) This is worse than the one we obtained in Experiment 1 (K=0.68 or K=0.73); in fact, this value of K goes below the level at which we can tentatively assume agreement among the annotators.

There could be several reasons for the fact that agreement got worse in this second experiment. Perhaps the simplest explanation is that we were just using more classes. In order to check whether this latter was the case, we ‘merged back’ the classes larger-situation and unfamiliar into one, as we had in the Experiment 1; that is, we recomputed K after counting all definite descriptions classified as either larger-situation or unfamiliar as members of the same class. And indeed, the agreement figures went up from K=0.63 to K=0.68 (ignoring doubts) when we did so, i.e., back within the ‘tentative’ margins of agreement according to (Carletta, 1996) (0.68 ≤ K < 0.8).

The remaining difference between the level of agreement obtained in this experiment and that obtained in the first one (K=0.73, ignoring doubts) might have to do with the annotators, with the difficulty of the texts, or with using a ‘syntactic’ (same head) as opposed to a ‘semantic’ notion of what counts as co-referential; we are inclined to think that the last two explanations are more likely. For one thing, we found very few examples of true ‘mistakes’ in the annotation, as discussed below. Secondly, we observed that the coefficient of agreement changes dramatically from text to text: in this second experiment, it varies from K=0.42 to K=0.92 depending on the text, and if we do not count the worse 3 texts in the second experiment, we get again K=0.73. Third, going from

\(^{17}\)It is difficult to decide what is the best way to treat cases marked as ‘doubt’—whether to take them out or to include them as a separate class—so we give both figures below.

25
a ‘syntactic’ to a ‘semantic’ definition of anaphoric definite description resulted in worse agreement both for co-referential and for bridging references; looking at the per-class figures, we notice that we went from a per-class agreement on anaphoric definite descriptions in Experiment 1 of 88% to a per-class agreement on coreferential definites of 86% in Experiment 2; and the per-class agreement for associative definite descriptions of 59% went down rather dramatically to a per-class agreement of 31% on bridging descriptions.

The good result obtained by reducing the number of classes led us to try to find a way of grouping definite descriptions into classes that would result in a better agreement. An obvious idea was to try with still fewer classes, i.e., just two. We first tried the binary division suggested by Fraurud: all co-referential definite descriptions on one side (‘subsequent mention’), and all other definite descriptions on the other (‘first mention’). Splitting things this way did result in an agreement of K=0.76, i.e., within the ‘tentative’ margins of agreement, although not quite as strong an agreement as we would have expected. The alternative of putting in one class all ‘discourse-related’ definite descriptions—co-referential and bridging references—and putting larger situation and unfamiliar definite descriptions in a second class resulted in a worse agreement, although by not much (K=0.73).

This suggests that our subjects did reasonably well at distinguishing first-mention from subsequent-mention entities, but not at drawing more complex distinctions. They were particularly bad at distinguishing bridging references from other definite descriptions; dividing the classifications into bridging definites, on the one hand, and all other definite descriptions, on the other, resulted in a very low agreement (K=0.24).

We obtained about the same results by computing the ‘per-class’ percentage of agreement discussed in Section §3. The rates of agreement for each class thus obtained are presented in Table 9. Again, we find that the annotators find it easier to agree on co-referential definite descriptions, harder to agree on bridging references; the percentage agreement on the classes larger situation and unfamiliar taken individually is much lower than the agreement on the class larger situation / unfamiliar taken as a whole.

The results in Table 9 confirm the indications obtained by computing agreement for a smaller number of classes: our subjects agree pretty much on co-

<table>
<thead>
<tr>
<th>Class</th>
<th>Total</th>
<th>Comparisons</th>
<th>Agree</th>
<th>Disagree</th>
<th>% Agreement</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Co-referential</td>
<td>617</td>
<td>1234</td>
<td>1066</td>
<td>168</td>
<td>86%</td>
</tr>
<tr>
<td>II. Bridging</td>
<td>118</td>
<td>236</td>
<td>74</td>
<td>162</td>
<td>31%</td>
</tr>
<tr>
<td>III. Larger situation</td>
<td>327</td>
<td>654</td>
<td>466</td>
<td>188</td>
<td>71%</td>
</tr>
<tr>
<td>IV. Unfamiliar</td>
<td>295</td>
<td>590</td>
<td>380</td>
<td>210</td>
<td>64%</td>
</tr>
<tr>
<td>Doubt</td>
<td>35</td>
<td>70</td>
<td>2</td>
<td>68</td>
<td>3%</td>
</tr>
</tbody>
</table>

Table 9: Per-class agreement in Experiment 2.
referential definite descriptions, but **bridging references** are not a natural class. We discuss the cases of disagreement in more detail next.

Classification disagreements

There are two basic kinds of disagreements among annotators: about classification, and about the identification of an antecedent.

There were 29 cases of complete classification disagreement among annotators, i.e., cases in which no two annotators classified a definite description in the same way, and 144 cases of partial disagreement. All four of the possible combinations of total disagreement were observed, but the two most common combinations were BCU (bridging, co-referential, and unfamiliar) and BLU (bridging, larger situation, and unfamiliar); all six combinations of partial disagreements were also observed. As we do not have the space for discussing each case in detail, we will concentrate on pointing out what we take to be the most interesting observations, especially from the perspective of designing a corpus annotation scheme for anaphoric expressions.

We found very few true 'mistakes'. We had some problems due to the presence of idioms such as they had to pick up the slack or on the whole the situation was better than expected. But in general, most of the disagreements were due to genuine problems in assigning a unique classification to definite descriptions.

The 'mistakes' that our annotators did make were of the form exemplified by (25). In this case, all three annotators indicate the same antecedent (the potential payoff) for the definite description the rewards, but whereas two of them classify the rewards as **co-referential**, one of them classifies it as **bridging**. What seems to be happening here and in similar cases is that even though we asked the subjects to classify 'semantically,' they ended up using a notion of 'relatedness' which is more like the notion of 'associative' in Experiment 1. (We found 10 such cases of partial disagreement between bridging and co-referential in which all three subjects indicated the same antecedent for the definite description.)

(25) New England Electric System bowed out of the bidding for Public Service Co. of New Hampshire, saying that the risks were too high and the potential payoff too far in the future to justify a higher offer.

...

"When we evaluated raising our bid, the risks seemed substantial and persistent over the next five years, and the **rewards** seemed a long way out."

A particularly interesting version of this problem appears in the following example, when two annotators took the verb to **refund** as antecedent of the definite description **the refund**, but one of them interpreted the definite as co-referential with the eventuality, the other as bridging.
(26) Commonwealth Edison Co. was ordered to refund about $250 million to its current and former ratepayers for illegal rates collected for cost overruns on a nuclear power plant.

The refund was about $55 million more than previously ordered by the Illinois Commerce Commission and trade groups said it may be the largest ever required of a state or local utility.

As could be expected by the discussion of the K results above, the most common disagreements (35 cases of partial disagreement out of 144) were between the classes larger situation and unfamiliar. One typical source of disagreement was the 'introductory' use of definite descriptions, common in newspapers: thus, for example, some of our annotators would classify the Illinois Commerce Commission as larger situation, other as unfamiliar. In many cases in which this form of ambiguity was encountered, the definite description worked effectively as a proper name: the world-wide supercomputer law, the new US trade law, or the face of personal computing.

Rather surprisingly, from a semantic perspective, the second most common form of disagreement was between the co-referential and bridging classes. In this case, the problem typically was that different subjects would choose different antecedents for a certain definite description. Thus, in example (26), the third annotator indicated $250 million as the antecedent for the refund, and classified the definite description as co-referential. A similar example is (27), in which two of the annotators classified the spinoff as bridging on spinoff Cray Computer Corp., whereas the third classified it as co-referential with the pending spinoff.

(27) The survival of spinoff Cray Computer Corp. as a fledgling in the supercomputer business appears to depend heavily on the creativity – and longevity – of its chairman and chief designer, Seymour Cray.

... Documents filed with the Securities and Exchange Commission on the pending spinoff disclosed that Cray Research Inc. will withdraw the almost $100 million in financing it is providing the new firm if Mr. Cray leaves or if the product-design project he heads is scrapped.

... While many of the risks were anticipated when Minneapolis-based Cray Research first announced the spinoff in May, the specifics it attached to the financing hadn’t been made public until yesterday.

An example of total (BLU) disagreement is the following

(28) Mr. Rapanelli recently has said the government of President Carlos Menem, who took office July 8, feels a significant reduction of principal and interest is the only way the debt problem may be solved.
In this case, we can see that all three interpretations are acceptable: we may take the definite description the government of President Carlos Menem, who took office July 8, either as a case of bridging reference on the previously mentioned Argentina, or as a larger situation use, or as a case of unfamiliar definite description, especially if we assume that this latter class coincides with Prince’s containing inferences.

In conclusion, our figures can be seen as an empirical verification of Fräurud’s and Prince’s hypothesis that the classification disagreements among annotators depend to a large extent on the task they are asked to do, rather than reflecting true differences in semantic intuitions.

Antecedent disagreements

Interestingly, we also found cases of disagreement about the antecedent of a definite description.

We have already discussed the most common case of antecedent disagreement: this is the case in which a definite description could equally well be taken as co-referential with one discourse entity or as bridging to another; for example, in an article in which the writer starts discussing Aetna Life & Casualty, and then goes on mentioning major insurers, either discourse entity could then serve as ‘antecedent’ for the subsequent definite description the insurer, depending on whether the definite description is classified as co-referential or bridging.

Perhaps most interesting of all cases of disagreement about the antecedent are examples such as (29). One subject indicated parts of the factory as the antecedent; another indicated the factory; and the third indicated areas of the factory.

(29) About 160 workers at a factory that made paper for the Kent filters were exposed to asbestos in the 1950s. Areas of the factory were particularly dusty where the crocidolite was used. Workers dumped large burlap sacks of the imported material into a huge bin, poured in cotton and acetate fibers and mechanically mixed the dry fibers in a process used to make filters. Workers described “clouds of blue dust” that hung over parts of the factory, even though exhaust fans ventilated the area.

What’s interesting about this example is that the text does not provide us with enough information to decide about the correct interpretation; it is as if the writer didn’t think it necessary for the reader to assign an unambiguous interpretation to the definite description. Similar cases of ‘underspecified’ definite descriptions have been observed before (e.g., Nunberg’s John shot himself in the foot or I’m going to the store mentioned in (Clark and Marshall, 1981)) but no real account has been given of the conditions under which they are possible.
5 Discussion and Conclusions

5.1 Some Consequences of This Research

Consequences for Corpus Annotation

This study raises the issue of how feasible it is to annotate corpora for anaphoric information. We observed two problems about the task of classifying definite descriptions: first, neither of the more complex classification schemes we tested resulted in a very good agreement among annotators; and second, even the task of identifying the antecedent of 'discourse-related' definite descriptions (i.e., co-referential and bridging) is problematic—we only obtained an acceptable agreement in the case of co-referential definite descriptions, and it was difficult for our annotators to choose a single antecedent for a definite description when both bridging and co-reference are allowed. These results indicate that annotating corpora for anaphoric information may be more difficult than expected. The task of indicating a unique antecedent for bridging definite descriptions appears to be especially challenging, for the reasons discussed above (multiple equally good antecedents and referential underspecification, for example).

On the positive side, we have two positive observations: subjects do reasonably well at distinguishing first-mention from subsequent-mention antecedents, and at identifying the antecedent of a subsequent-mention definite description. A classification scheme based on this distinction (such as Fraun's) and that just asked subjects to indicate an antecedent for subsequent-mention definite descriptions may have a chance of resulting in a standardized annotation. Even in this case, however, the agreement we observed was not very high.

The possibility we are exploring is that these results might get better if annotators are given computer support in the form of a semi-automatic classifier—i.e., a system capable of suggesting to annotators a classification for definite descriptions, including possibly an indication of how reliable the classification might be. We briefly discuss below our progress in this direction so far.

Consequences for Linguistic Theory

Our study confirms the findings of previous work (e.g., (Fraun, 1990)) that a great number of the definite descriptions in texts are discourse-new; in our second experiment we found an equal number of discourse-new and 'discourse-related' definite descriptions, although many of the definite descriptions classified as discourse new could be seen as associative in a loose sense. Interestingly, this suggests that each of the competing hypotheses about the licensing conditions for definite descriptions—the uniqueness and the familiarity theory—accounts satisfactorily for about half of the data.
Of the existing theories of definite descriptions, the one that comes closest to accounting for all of the uses of definite descriptions that we observed is Löbner’s (1985). Löbner proposes that the defining property of definite descriptions, from a semantic point of view, is that they indicate that the head noun complex denotes a functional concept, i.e., a function (which, according to Löbner, can take one, two or three arguments). He argues that some head noun complexes denote such a function on purely lexical semantic grounds: this is the case, for example, of the head noun complexes in the father of Mr. Smith, the first man to sail to America and the fact that life started on Earth; he calls these definite descriptions semantic definites. In other cases, such as the dog, the head noun by itself would not denote a function, but a sort; in these cases, according to Löbner, the use of a definite description is only felicitous if context indicates the function to be used. This latter class of pragmatic definites includes the best-known cases of familiar definites—anaphoric, immediate and visible situation, and larger situation—as well as some cases classified by Hawkins as unfamiliar and by Prince as containing inferrables. Löbner does not discuss the conditions under which a writer can assume that the reader can recognize that context creates a functional concept out of a sortal one, but his account could be supplemented by Clark and Marshall’s theory of what may count as a basis for a mutual knowledge induction schema (Clark and Marshall, 1981).

Consequences for Processing Theories

Given that first-mention definite descriptions are so numerous, and that recognizing them does not depend on commonsense knowledge alone, we conclude that any general theory of definite description interpretation should include methods for recognizing such definites. The architecture of our own classifier (see below) is also consistent with Frarud’s hypothesis that these methods are not just used when no suitable antecedent can be found, but more extensive investigations will be needed before we can conclude that this architecture significantly outperforms other ones.

The presence of such a large number of discourse-new definite descriptions is also problematic for the idea that definite descriptions are interpreted with respect to the global focus (Grosz, 1977; Grosz and Sidner, 1986). A significant percentage of the larger situation definite descriptions encountered in our corpus cannot be said to be in the ‘global focus’ in any significant sense: as we observed above, in many of these cases the writer seems to rely on the reader’s capability to add a new object such as the Illinois Commerce Commission to her/his model of the world, rather than expecting that object to be already present.

18 Löbner’s theory still does not account for generic uses of definite descriptions.

31
5.2 A (Semi)-Automatic Classifier

As already mentioned, we are in the course of implementing a system capable of performing the classification task semi-automatically (Vieira, 1998). This system would help the human classifiers by suggesting possible classifications, and possible antecedents in the case of discourse-related definite descriptions.

Our system implements the 'dual-processing' strategy discussed above. On the one hand, it attempts to resolve anaphoric same-head definite descriptions by maintaining a simple discourse model and searching back into this model to find all possible antecedents of a definite description (using a special matching heuristic to deal with pre- and post-modification). On the other, it uses heuristics to identify unfamiliar and larger situation definite descriptions on the basis of syntactic information and very little lexical information about nouns that take complements. The current order of application of the resolution and classification steps has been determined by empirical testing, and has been compared with that suggested by decision-tree learning techniques.

We 'trained' a version of the system on the corpus used for the first experiment, and then compared its classification of the corpus used for the second experiment with that of our three subjects.19 We developed two versions of the system: one which only attempts to classify subsequent mention and discourse-new definite descriptions (Vieira and Poesio, 1997), and one which also attempts to classify bridging references (Poesio et al., 1997).

The first version of the system finds a classification for 318 definite descriptions out of the 464 in our test data (the articles used in the second experiment). The agreement between the system and the three annotators on the two classes first mention and subsequent mention is $K=0.70$ overall ($K=0.77$ for the three annotators on the converted annotation), if all definite descriptions to which the system can't assign a classification are treated as first-mention; the coefficient of agreement is $K=0.78$ if we do not count the definite descriptions that the system cannot classify ($K=0.81$ for the annotators on just those definite descriptions).

The version of the system that also attempts to recognize bridging references has a worse performance, which is not surprising given the problems our subjects had in classifying bridging descriptions. This version of the system finds a classification for 355 descriptions out of 464, and its agreement with the three annotators is $K=0.63$ if the cases that the system cannot classify are not counted ($K=0.70$ for the three annotators on 3 categories with just these definite classifications); $K=0.57$ if we count the cases that the system does not classify as discourse-new (for 447 descriptions); and $K=0.63$ again if we count the cases that the system does not classify as bridging (again, 447 descriptions).

19As the two classification schemes were different, the comparison involved a conversion of the annotations produced in the second experiment into ones using the scheme used in the first experiment.
5.3 Future Work

We collected plenty of data about definite descriptions that we are still in the process of analyzing. One issue we are studying at the moment is what to do with bridging references: how to classify them if at all, and how to process them. We also intend to study Loebner’s hypothesis about the role played by the distinction between ‘sortal’ and ‘relational’ head nouns in determining the type of process involved in the resolution of a definite description, possibly by finding a way to ask our subjects to recognize these distinctions. And we plan to study the issue of generic definites.

An obvious direction in which to extend this study is by looking at other kinds of anaphoric expressions such as pronouns and demonstratives. We are performing preliminary studies in this direction.

Finally, we would like to emphasize that although this study is the most extensive investigation of definite description use in a corpus that we know of (we looked at a total of more than 1400 definite descriptions in 33 texts, i.e., almost three times as many as in Fraurud’s study), in practice we still got very little data on many of the uses of definite descriptions, so some caution is necessary in interpreting these results. The problem is that the kind of analysis we performed is extremely time consuming: it will be crucial in the future to find ways of performing this task that will allow us to analyze more data, possibly with the help of computer simulations.

Acknowledgments

We wish to thank Jean Carletta for much help both with designing the experiments and with the analysis of the results. We are also grateful to Ellen Bard, Robin Cooper, Kari Fraurud, Janet Hitzeman, Kjetil Strand, and our anonymous reviewers for many helpful comments. Massimo Poesio holds an Advanced Research Fellowship from EPSRC, UK; Renata Vieira is supported by a fellowship from CNPq, Brazil.

References

Bosch, Peter and Bart Geurts. 1989. Processing definite NPs. IWBS Report 78, IBM Germany, July.

A Instructions to the Annotators (First Experiment)

Classification of uses of “the”-phrases

You will receive a set of texts to read and annotate. From the texts, the system will extract and present you “the”-phrases and will ask you for a classification. You must choose one of the following classes:

1. **ANAPHORIC** (same noun): For anaphoric “the”-phrases the text presents an antecedent noun phrase which has the same noun of the given “the”-phrase. The interpretation of the given “the”-phrase is based on this previous noun-phrase.

2. **ASSOCIATIVE**: For associative “the”-phrases the text presents an antecedent noun phrase which has a different noun for the interpretation of the given “the”-phrase. The antecedent for the “the”-phrase in this case may
 a) allow an inference towards the interpretation of the “the”-phrase,
 b) be a synonym,
 c) be an associate such as part-of, is-a, etc.
 d) a proper name

3. **LARGER SITUATION/UNFAMILIAR**: For larger situation use of “the”-phrases you do not find an explicit antecedent in the text, because the reference is based on basic common knowledge:
 a) first occurrences of proper names (subsequent occurrences must be considered as anaphoric),
 b) reference to times,
 c) community common knowledge;
 d) proper names in premodifier position.
 Also for unfamiliar uses of “the”-phrases the text does not provide an antecedent. The “the”-phrase refers to something new to the text. The help for the interpretation may be given together with the “the”-phrase as in
 e) restrictive relative clauses (the ... that ... - RC in general)
 f) associative clauses (the ... of ... - PP in general)
 g) NP complements (the fact that ...,the conclusion that ...)
 h) unexplanatory modifiers (the first ..., the best ...)
 i) appositive structures (James Dean, the actor)
 j) copulas (the actor is James Dean)

4. **IDIOM**: “The”-phrases can be used just as idiomatic expressions, indirect references or metaphorical uses.

5. **DOUBT**: When you are in doubt about the classification: a comment on your doubt is requested.

Preference order for the classification: In spite of the fact that defines often fall in more than one class of use, the identification of a unique class is required. In order to make the choices uniform, priority is to be given to anaphoric situations. According to this ordering, cases like “the White House”
or “the government” are anaphoric rather than larger situation, *when it has already occurred once in the text*. When a “the”-phrase seems to belong both to larger sit./unfamiliar and associative classes, preference is given to larger sit./unfamiliar.

Examples

[Examples from the corpus were given as in section 3.]
Summary

WHEN AN ANTECEDENT IS GIVEN EXPLICITLY IN THE TEXT:(1,2)
1.: ANAPHORIC
There is an antecedent in the text which has the same descriptive noun of the “the”-phrase.
2.: ASSOCIATIVE
There is an antecedent in the text which has a different noun, but it is a synonym or associate to the description.

WHEN THE REFERENT FOR THE DESCRIPTION IS KNOWN OR NEW:(3,4)
3.: LARGER SIT./UNFAMILIAR
The “the”-phrase is novel in the text, unique identifiable, or based on common knowledge or is given with its referent
4.: IDIOM
The “the”-phrase is an idiomatic expression

1. (a) a house the house
(b) a home: the house
(c) a house the door
(d) Kadane Co.: the company

2. (a) something has changed: the change
(b) a home: the house
(c) a house the door

3. (a) the White House (first occurrence)
(b) the third quarter
(c) the nation
(d) the Iran-Iraq war
(e) the woman he likes
(f) the door of the house
(g) the fact that
(h) the first, the best, the highest, the tallest ...
(i) James Dean, the actor
(j) the actor is James Dean

4. (a) back into the soup
B Instructions to the Subjects (Second Experiment)

Text Annotation of Definite Descriptions

This material provides you with instructions, examples and some training for the text-annotation task. The task consists of reading newspaper articles and analysing occurrences of DEFINITE DESCRIPTIONS, which are expressions starting with the definite article THE. We will call these expressions DDs or DD, DDs describe things, ideas or entities which are talked about in the text. The things, ideas or entities being described by DDs will be called ENTITIES. You should look at the text, carefully in order to indicate whether the ENTITY was mentioned before in the text and if so, to indicate where. You will receive a set of texts and their corresponding tables to fill in. There are basically four cases to be considered:

1. Usually DDs pick up an entity introduced before in the text. For instance, in the sequence:

 "Mrs. Park is saving to buy an apartment. The housewife is saving harder than ever."

 the ENTITY described by the DD "the housewife" was mentioned before as "Mrs. Park".

2. If the ENTITY itself was not mentioned before but its interpretation is based on, dependent on, or related to some other idea or thing in the text, you should indicate it. For instance, in the sequence:

 "The Parks wanted to buy an apartment but the price was very high.

 the ENTITY described by the DD the price is related to the idea expressed by an apartment in the text.

3. It may also be the case that the DD was not mentioned before and is not related to something in the text, but it refers to something which is part of the common knowledge of the writer and readers in general. (The texts to be analysed are Wall Street Journal articles - location and time, for instance, are usually known to the general reader from sources which are outside the text). Example:

 "During the past 15 years housing prices increased nearly fivefold."

 here, the ENTITY described by the DD the past 15 years is known to the general reader of the Wall Street Journal and was not mentioned before in the text.

4. Or it may be the case that the DD is self-explanatory or it is given together with its own identification. In these cases it becomes clear to the general reader what is being talked about even without previous mention in the text or without previous common knowledge of it. For instance:
“The proposed legislation is aimed at rectifying some of the inequities in the current land-ownership system.”

The ENTITY described here is new in the text, and is not part of the knowledge of readers but the DD the inequities in the current land-ownership system is self-explanatory.

The texts will be presented to you in the following format: on the left, the text with its DDs in evidence; on the right, the keys (number of the sentence/number of DD) and the DD to be analysed. The key is for internal control only, but it may help you to find DDs in the table you have to fill in.

Text 0
1 Y.J. Park and her family scrimped for four years to buy a tiny apartment here, but found that the closer they got to saving the $40,000 they originally needed, the more the price rose.

... 3 Now the 33-year-old housewife, whose husband earns a modest salary as an assistant professor of economics, is saving harder than ever.

... 9 During the past 15 years, the report showed, housing prices increased nearly fivefold.

... 22 The proposed legislation is aimed at rectifying some of the inequities in the current land-ownership system.

You can draw arrows, use colours, whatever you like over the text and the list of DDs to help your analysis and then you should complete a table in the format below.

<table>
<thead>
<tr>
<th>Text 0</th>
<th>Key</th>
<th>DEFINITE DESCRIPTION</th>
<th>LINK</th>
<th>LINK Sentence no./ previous mention</th>
<th>NO LINK K/D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1</td>
<td>1/1</td>
<td>the price</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/2</td>
<td>3/2</td>
<td>the 33-year-old housewife</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Each case (1 to 4, above) is to be indicated on the table according to the following (see examples in the table below):

Whenever you find a previous mention in the text of the DD you should mark the column LINK:
1. Mark "=" if the entity described was mentioned before.

2. Mark "R" if the entity described is new but it is related/based/dependent on something mentioned before.

In the case of both 1 and 2 you should provide the sentence number where the previous/related mention is and write down the previous/related mention of it (see example in the table below).

If the entity was not previously mentioned in the text and it is not related to something mentioned before, then mark the column NO LINK.

3. Mark "K" if it is something of writer/readers' common knowledge.

4. Mark "D" if it is new in the text and the readers have no previous knowledge about it but the description is enough to make readers identify it.

<table>
<thead>
<tr>
<th>Text 0 Key</th>
<th>Definite Description</th>
<th>Link =/R</th>
<th>Link Sentence no./ previous mention</th>
<th>NO LINK K/D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1</td>
<td>the price</td>
<td>R</td>
<td>1/apartment</td>
<td></td>
</tr>
<tr>
<td>3/2</td>
<td>the 33-year-old housewife</td>
<td>=</td>
<td>1/3/3: Park</td>
<td></td>
</tr>
<tr>
<td>9/3</td>
<td>the past 15 years</td>
<td></td>
<td></td>
<td>K</td>
</tr>
<tr>
<td>22/4</td>
<td>the inequalities in the current land-ownership system</td>
<td>—</td>
<td>—</td>
<td>D</td>
</tr>
</tbody>
</table>

In case of doubt just leave the line in blank and comment at the back of the page using the key number to identify the DD you are commenting on.

Examples

Next we present some examples and further explanation for each one of the four cases that have been considered.

Case 1 - LINK (=)

For case no. 1 you may find a previous mention that may be equal or different from the DD (for instance, the government - the government, a report - the report, and these bills - the proposed legislation in the examples below); distances from previous mentions and DDs may also vary.

- Meanwhile, the government's Land Bureau reports that only about a third of Korean families own their own homes. Last week, the government took three bills to the National Assembly.

- Last May, a government panel released a report on the extent and causes of the problem. During the past 15 years, the report showed, housing prices increased nearly fivefold.
• Last week, the government took three bills to the National Assembly. The proposed legislation is aimed at rectifying some of the inequities in the current land-ownership system.

Case 2 - LINK (R)

Here are cases of DDs which are related to something that was present in the text. If you ask for the examples below, "Which government, population, nation is that?" "Which blame is that?" the answer is given by something previously mentioned in the text (Koreans, and the increase of housing prices, respectively) 20.

• For the Parks and millions of other young Koreans, the long-cherished dream of home ownership has become a cruel illusion. For the government, it has become a highly volatile political issue. In 1987, a quarter of the population owned 91% of the nation's 71,895 square kilometers of private land.

• During the past 15 years, the report showed, housing prices increased nearly fivefold. The report laid the blame on speculators, who it said had pushed land prices up ninefold.

Case 3 - NO LINK (K)

These cases of DDs are based on the common reader's knowledge. The texts to be analysed are Wall Street Journal articles - location and time, for instance, are usually known to the general reader from sources which are outside the text 21.

• For example, officials at Walnut Creek office learned that the Amfac Hotel near the San Francisco airport, which is insured by Aetna, was badly damaged when they saw it on network television news.

• Adjusters who had been working on the East Coast say the insurer will still be processing claims from that storm through December.

Case 4 - NO LINK (D)

These cases of DDs are self-explanatory or accompanied by their identification. For instance if you ask "Which difficulty is that?" "Which fact is that?" "Which know-how is that?" etc. for the examples below, the answer is given by the DD itself. In the last example the DD is accompanied by its explanation.

20 Note that DDs like the blame, the government, the population, which are case 2 in their first occurrence, are to be considered case 1 in possible posterior occurrences.

21 Note that a DD like "the government" may belong to case 2 as exemplified, but it may refer to the U.S.A. in another text, without any explicit mention of U.S.A. in the text, since it is the country where the newspaper is produced. In such a situation the DD "the government" belongs to case 3. It may also be the case that the entity is part of the readers' knowledge but was mentioned before, in this situation it belongs to case 1.
Because of the difficulty of assessing the damages caused by the earthquake, Aetna pulled together a team of its most experienced claims adjusters from around the country.

They wonder whether he has the economic know-how to steer the city through a possible fiscal crisis.

Mr. Dinkins also has failed to allay Jewish voters' fears about his association with the Rev. Jesse Jackson, despite the fact that few local non-Jewish politicians have been as vocal for Jewish causes in the past 20 years as Mr. Dinkins has.

But racial gerrymandering is not the best way to accomplish that essential goal.

The first hybrid corn seeds produced using this mechanical approach were introduced in the 1930s and they yielded as much as 20% more corn than naturally pollinated plants.

The Citizens Coalition for Economic Justice, a public-interest group leading the charge for radical reform, wants restrictions on landholdings, high taxation of capital gains, and drastic revamping of the value-assessment system on which property taxes are based.

SCRIPT

In order to help you filling in the table, answer the YES-NO questions below for each one of the DDs in the text. When the answer for the question is YES (Y) you have an action to follow, if the answer is NO (N), skip to the next question.

1. Does the DD describe an entity mentioned before?

 Y Mark "=" (column LINK) to indicate that the same entity was mentioned before and tell where by providing the sentence number and the words used in the previous mention.

 N Go to question no. 2.

2. Is the entity new but related to something mentioned before? If you ask: "Which entity is that?", is the answer based on previous text?

 Y Mark "R" (column LINK) to indicate related entity and provide the sentence number and the previous mention on which the DD is based.

22 For instance if you ask: "Which price is that?" for the price in sentence number 1, given above, your answer is based on apartment in the text.
N Go to question no. 3.

3. Is the ENTITY new in the text? If it was not mentioned before and its interpretation is not based on the previous text, then: is it something mutually known by writer and general readers of the Wall Street Journal?

Y Mark "K" (column NO LINK) to indicate general knowledge about the entity.

N Go to question no. 4.

4. Is the ENTITY new in the text? If it was not mentioned before and its interpretation is not based on the previous text, then: is it self-explanatory or accompanied by its identification?

Y mark "D" (column NO LINK) to indicate that the description is enough to make readers identify the entity.

N Leave the line in blank and comment at the back of the page using the key number to identify the DD.”