Anaphora resolution: the problem

Example

Sophia Loren says she will always be grateful to Bono. The actress revealed that the U2 singer helped her calm down when she became scared by a thunderstorm while travelling on a plane.

- she \Rightarrow Sophia Loren
- the actress \Rightarrow Sophia Loren
- the U2 singer \Rightarrow Bono
- her \Rightarrow Sophia Loren
- she \Rightarrow Sophia Loren
Anaphora resolution: coreference chains

Example
Sophia Loren says she will always be grateful to Bono. The actress revealed that the U2 singer helped her calm down when she became scared by a thunderstorm while travelling on a plane.

Coreference Chains:
- {Sophia Loren, she, the actress, her, she}
- {Bono, the U2 singer}
- {a thunderstorm}
- {a plane}

Anaphora resolution as Structure Learning

- So far we have only seen examples of text analytics applications in which the task was to label a SINGLE OBJECT
- In the case of anaphora resolution/coreference, the task is to label a STRUCTURE
 - In its simplest form, the antecedent / anaphor pair (MENTION PAIR)
- This is an example of so-called STRUCTURED LEARNING
Factors that affect the interpretation of anaphoric expressions

- Factors:
 - Morphological features (agreement)
 - Syntactic information
 - Salience
 - Lexical and commonsense knowledge

- Distinction often made between CONSTRAINTS and PREFERENCES

Agreement

- GENDER strong CONSTRAINT for pronouns (in other languages: for other anaphors as well)
 - [Jane] blamed [Bill] because HE spilt the coffee
 (Ehrlich, Garnham e.a, Arnold e.a)

- NUMBER also strong constraint
 - [[Union] representatives] told [the CEO] that THEY couldn’t be reached
Lexical and commonsense knowledge

[The city council] refused [the women] a permit because they feared violence.
[The city council] refused [the women] a permit because they advocated violence.
Winograd (1974), Sidner (1979)

BRISBANE – a terrific right rip from [Hector Thompson] dropped [Ross Eadie] at Sandgate on Friday night and won him the Australian welterweight boxing title. (Hirst, 1981)

Problems to be resolved by an AR system: mention identification

• Effect: recall
• Typical problems:
 – Nested NPs (possessives)
 • [a city] 's [computer system] → [[a city]’s computer system]
 – Appositions:
 • [Madras], [India] → [Madras, [India]]
 – Attachments
Problems for AR: agreement extraction

• The committee are meeting / is meeting
• The Union sent a representative. They
• The doctor came to visit my father. SHE told him ...

Problems to be solved: anaphoricity determination

• Expletives:
 – IT’s not easy to find a solution
 – Is THERE any reason to be optimistic at all?
• Non-anaphoric definites
Problems for AR:
Complex attachments

• [The quality that’s coming out of [software from [India]]
 – The quality that’s coming out of software from India is now exceeding the quality of software that’s coming out from the United States
• scanning through millions of lines of computer code
 • ACE/bnews/devel/ABC19981001.1830.1257

Early systems

• Hobbs 1976 Naïve Algorithm
 – Pronouns only
 – Syntax based
 – Still very competitive
• Sidner 1979
• Carter 1986
MODERN WORK IN ANAPHORA RESOLUTION

• Availability of the first anaphorically annotated corpora circa 1993 (MUC6) made statistical methods possible

• Most current anaphora resolution systems are based on machine learning, but there is one notable exception, the Stanford Coreference system

MUC

• First big initiative in Information Extraction
• Produced first sizeable annotated data for coreference
• Developed first methods for evaluating systems
MUC terminology:

- **MENTION**: any markable
- **COREFERENCE CHAIN**: a set of mentions referring to an entity
- **KEY**: the (annotated) solution (a partition of the mentions into coreference chains)
- **RESPONSE**: the coreference chains produced by a system

The Stanford Deterministic Coreference Resolution System

- Part of the Stanford CORE Pipeline
- The best-performing system at CONLL 2011, and used as a component by two of the top three systems at CONLL 2012
- Key to its performance are
 - A very high quality mention detection component based on the Stanford CORE pipeline
 - A PRECISION-FIRST coreference resolution component based on 10 filters called SIEVES that implement many of the restrictions on anaphora resolution discussed in previous slides
The Sieves

1. **Speaker Identification:** This sieve first identifies speakers, then matches first and second pronouns to these speakers.

2. **ExactMatch:** This sieve links together two mentions only if they contain exactly the same text, including both determiners and modifiers.

3. **Relaxed String Match:** This sieve links together two mentions only if they contain exactly the same text after dropping the postmodifiers.

4. **Precise Constructs:** This sieve links together two mentions if they occur in one of a series of high precision constructs: e.g., if they are in an appositive construction ([the speaker of the House], [Mr. Smith] . . .), or if both mentions are tagged as NNP and one of them is an acronym of the other.

5. **Strict Head Match:** This sieve links together a mention with a candidate antecedent entity if all of a number of constraints are satisfied: (a) the head of the mention matches any of the heads of the candidate antecedent; (b) all non-stop words of the mention are included in the non-stop words of the candidate antecedent; (c) all mention modifiers are included among the modifiers of the candidate antecedent; and (d) the two mentions are not in an i-within-i situation, i.e., one is not a child in the other.

6. **Variants of Strict Head Match:** Sieve 6 relaxes the ‘compatible modifiers only’ constraint in the previous sieve, whereas Sieve 7 relaxes the ‘word inclusion’ constraint.

7. **Proper Head Match:** This sieve links two proper noun mentions if their head words match and a few other constraints apply.

8. **Relaxed Head Match:** This sieve relaxes the requirement that the head word of the mention must match a head word of the candidate antecedent entity.

9. **Pronounresolution:** Finally, pronouns are resolved by finding candidate esmatch-ing the pronoun in number, gender, person, animacy, and NER label, and at most 3 sentences distant.
STATISTICAL APPROACHES TO ANAPHORA RESOLUTION

• UNSUPERVISED approaches
 – Eg Cardie & Wagstaff 1999, Ng 2008
• SUPERVISED approaches
 – Early (NP type specific)
 – Soon et al: general classifier + modern architecture

Soon et al 2001

• First ‘modern’ ML approach to anaphora resolution
 – Resolves ALL anaphors
 – Fully automatic mention identification
• Developed instance generation & decoding methods used in a lot of work since
ANAPHORA RESOLUTION AS A CLASSIFICATION PROBLEM

1. Classify MENTION PAIR <NP1,NP2> as coreferential or not
2. Build a complete coreferential chain

Soon et al: MENTION PAIRS

<ANAPHOR (j), ANTECEDENT (i)>
SOME KEY DECISIONS

• ENCODING
 – I.e., what positive and negative instances to generate from the annotated corpus
 – Eg treat all elements of the coref chain as positive instances, everything else as negative:

• DECODING
 – How to use the classifier to choose an antecedent
 – Some options: ‘sequential’ (stop at the first positive), ‘parallel’ (compare several options)

Soon et al: preprocessing

 – POS tagger: HMM-based
 • 96% accuracy
 – Noun phrase identification module
 • HMM-based
 • Can identify correctly around 85% of mentions (?? 90% ??)
 – NER: reimplementation of Bikel Schwartz and Weischedel 1999
 • HMM based
 • 88.9% accuracy
Soon et al 2001: Features

- NP type
- Distance
- Agreement
- Semantic class

Soon et al: NP type and distance

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP type of antecedent i</td>
<td>i-pronoun (bool)</td>
</tr>
<tr>
<td>NP type of anaphor j (3)</td>
<td>j-pronoun, def-np, dem-np (bool)</td>
</tr>
<tr>
<td>Types of both</td>
<td>both-proper-name (bool)</td>
</tr>
<tr>
<td>DIST</td>
<td>0, 1, ...</td>
</tr>
</tbody>
</table>
Soon et al features: string match, agreement, syntactic position

STR_MATCH

ALIAS

- dates (1/8 – January 8)
- person (Bent Simpson / Mr. Simpson)
- organizations: acronym match (Hewlett Packard / HP)

AGREEMENT FEATURES

- number agreement
- gender agreement

SYNTACTIC PROPERTIES OF ANAPHOR

- occurs in appositive construction

Soon et al: semantic class agreement

![Semantic Class Agreement Diagram]

$SEMCLASS = \text{true iff } \text{semclass}(i) \leq \text{semclass}(j)$ or vice versa
Soon et al: generating training instances

- Marked antecedent used to create positive instance
- All mentions between anaphor and marked antecedent used to create negative instances
Soon et al: decoding

• Right to left, consider each antecedent until classifier returns true

Soon et al: evaluation

• MUC-6:
 – P=67.3, R=58.6, F=62.6
• MUC-7:
 – P=65.5, R=56.1, F=60.4
Soon et al: evaluation

Evaluation of coreference resolution systems

- Lots of different measures proposed
- ACCURACY:
 - Consider a mention correctly resolved if
 - Correctly classified as anaphoric or not anaphoric
 - ‘Right’ antecedent picked up
- Measures developed for the competitions:
 - Automatic way of doing the evaluation
- More realistic measures (Byron, Mitkov)
 - Accuracy on ‘hard’ cases (e.g., ambiguous pronouns)
Vilain et al 1995

- The official MUC scorer
- Based on precision and recall of links

Vilain et al: the goal

The problem: given that A, B, C and D are part of a coreference chain in the KEY, treat as equivalent the two responses:

And as superior to:
Vilain et al: RECALL

• To measure RECALL, look at how each coreference chain S_i in the KEY is partitioned in the RESPONSE, and count how many links would be required to recreate the original, then average across all coreference chains.

$$R_T = \frac{\sum(|S_i| - |p(S_i)|)}{\sum(|S_i| - 1)}$$

Vilain et al: Example recall

• In the example above, we have one coreference chain of size 4 ($|S| = 4$)
• The incorrect response partitions it in two sets ($|p(S)| = 2$)
• $R = \frac{4-2}{4-1} = \frac{2}{3}$
Vilain et al: precision

• Count links that would have to be (incorrectly) added to the key to produce the response
• I.e., ‘switch around’ key and response in the equation before

Beyond Vilain et al

• Problems:
 – Only gain points for links. No points gained for correctly recognizing that a particular mention is not anaphoric
 – All errors are equal
• Proposals:
 – Bagga & Baldwin’s B-CUBED algorithm
 – Luo recent proposal
After Soon et al 2001

- Different models of the task
- Different preprocessing techniques
- Using lexical / commonsense knowledge (particularly semantic role labelling)
- Salience
- Anaphoricity detection
- Development of AR toolkits (GATE, LingPipe, GUITAR)

Error analysis (Soon et al)

- Errors most affecting precision:
 - Prenominal modifiers identified as mentions and other errors in mention identification
 - String match but noun phrases refer to different entities
- Errors most affecting recall:
 - Errors in mention identification (11%)
 - Errors in SEMCLASS determination (10%)
 - Need more features (63.3%)
Soon et al examples of errors:

- Tarnoff, a former Carter administration official and president of the Council on foreign relations, is expected to be named *undersecretary* for political affairs ... Former. Sen Tim Wirth is expected to get a newly created *undersecretary* post for global affairs
- [Ms Washington and Mr. Dingell] have been considered [allies] of *[the Securities exchanges]*, while [banks] and *[future exchanges]* often have fought with THEM

Mention detection errors in GUITAR
(Kabadjov, 2007)

[The bow] (see detail, below right) is decorated with a complicated arrangement of horses and lions’ heads.

Above the lions’ heads are four sphinxes.

Three pairs of lions clamber up the section from the point where *[the sheath and bow]* are joined.
More recent models

- Cardie & Wagstaff: coreference as (unsupervised) clustering
 - Much lower performance
- Ranking models:
 - Ng and Cardie 2002
 - Yang ‘twin-candidate’ model
- Entity-mention models
- Joint entity detection & tracking

Ng and Cardie 2002

- 2002:
 - Changes to the model:
 - Positive: first NON PRONOMINAL
 - Decoding: choose MOST HIGH PROBABILITY
 - Many more features:
 - Many more string features
 - Linguistic features (binding, etc)
- Subsequently:
 - Discourse new detection
Ranking models

- Idea: train a model that imposes a ranking on the candidate antecedents for an NP to be resolved so that it assigns the highest rank to the correct antecedent
- A ranker allows all candidate antecedents to be considered simultaneously and captures competition among them
 - Allows us find the best candidate antecedent for an NP
- There is a natural resolution strategy for a ranking model
 - An NP is resolved to the highest-ranked candidate antecedent

How to train a ranking model

- Convert the problem of ranking m NPs into the a set of pairwise ranking problems
 - Each pairwise ranking problem involves determining which of two candidate antecedents is better for an NP to be resolved
 - Each one is essentially a classification problem
- Ranking rediscovered independently by
 - Yang et al. (2003) (twin-candidate model)
 - Iida et al. (2003) (tournament model)
- Denis & Baldrige (2007, 2008): train the ranker using maximum entropy
 - model outputs a rank value for each candidate antecedent
Entity-mention models

- Classifiers that determine whether (or how likely) an NP belongs to a preceding COREFERENCE CLUSTER

Luo et al.’s Bell Tree model
Entity-mention models

• Classifiers that determine whether (or how likely) an NP belongs to a preceding coreference cluster
• more expressive than the mention-pair model
 – can employ cluster-level features defined over any subset of NPs in a preceding cluster

Cluster-level features
Rahman and Ng’s cluster-ranking model

Joint Entity Detection and Tracking

• Daume and Marcu 2005: Mention identification, classification, and linking take place at the same time
• Denis and Balridge 2007: ILP
The state of the art in coreference: the 2012 CONLL Shared Task

- Data: OntoNotes
 - 1.6M words English, 900K words Chinese, 300K words Arabic
 - Annotated with: syntactic information, wordsenses, propositional information
- Tracks:
 - Closed
 - Open
- Metrics: MELA
 - (a combination of MUC / B3 / CEAF)

CONLL 2012 ST: RESULTS

<table>
<thead>
<tr>
<th>Participant</th>
<th>Open English</th>
<th>Open Chinese</th>
<th>Open Arabic</th>
<th>Closed English</th>
<th>Closed Chinese</th>
<th>Closed Arabic</th>
<th>Official Score</th>
<th>Train</th>
<th>Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>fernandes</td>
<td>63.37</td>
<td>58.49</td>
<td>54.22</td>
<td>58.69</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bjorkelund</td>
<td>87.83</td>
<td>59.97</td>
<td>53.35</td>
<td>58.35</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chen</td>
<td>63.53</td>
<td>59.69</td>
<td>62.24</td>
<td>47.13</td>
<td>56.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>stamborg</td>
<td>59.36</td>
<td>56.85</td>
<td>49.43</td>
<td>55.21</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>uryupina</td>
<td>56.12</td>
<td>53.87</td>
<td>53.57</td>
<td>53.47</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>zhukova</td>
<td>48.70</td>
<td>44.53</td>
<td>40.57</td>
<td>44.60</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>li</td>
<td>45.85</td>
<td>46.27</td>
<td>33.53</td>
<td>41.88</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>yuan</td>
<td>61.02</td>
<td>58.68</td>
<td>60.69</td>
<td>39.79</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>siu</td>
<td>57.49</td>
<td>57.37</td>
<td>38.90</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>martischat</td>
<td>61.31</td>
<td>53.15</td>
<td>38.15</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chunyang</td>
<td>55.22</td>
<td>51.83</td>
<td>37.02</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>yang</td>
<td>55.29</td>
<td>18.43</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chang</td>
<td>60.18</td>
<td>45.71</td>
<td>35.30</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xinxin</td>
<td>48.77</td>
<td>51.76</td>
<td>33.51</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>shou</td>
<td>58.25</td>
<td>19.42</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xiong</td>
<td>59.23</td>
<td>44.35</td>
<td>44.37</td>
<td>0.00</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ANAPHORA / COREFERENCE DATASETS

- MUC6/MUC7 (small, old)
- ACE 2002/2005
- ONTONOTES
- ARRAU (locally developed)

Tools for AR

- Java-RAP (pronouns)
- GUITAR (Kabadjov, 2007)
- BART (Versley et al, 2008)
- Stanford Deterministic Coreference Resolver (Lee et al 2013)
 - See labs
- CORT (Martschat & Strube 2015)
 - See in labs
Readings