Reminder: Clustering

• Or, discovering similarities between objects
 – Individuals, Documents, ...
• Applications:
 – Recommender systems
 – Document organization
Recommending: restaurants

- We have a list of all Wivenhoe restaurants
 - with ratings for some
 - as provided by some Uni Essex students / staff
- Which restaurant(s) should I recommend to you?

Input

<table>
<thead>
<tr>
<th>Name</th>
<th>Restaurant</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>Bakehouse</td>
<td>Yes</td>
</tr>
<tr>
<td>Bob</td>
<td>The Flag</td>
<td>No</td>
</tr>
<tr>
<td>Cindy</td>
<td>Black Buoy</td>
<td>No</td>
</tr>
<tr>
<td>Dave</td>
<td>The Flag</td>
<td>Yes</td>
</tr>
<tr>
<td>Alice</td>
<td>Black Buoy</td>
<td>No</td>
</tr>
<tr>
<td>Estie</td>
<td>The Greyhound</td>
<td>Yes</td>
</tr>
<tr>
<td>Cindy</td>
<td>The Greyhound</td>
<td>No</td>
</tr>
<tr>
<td>Dave</td>
<td>Bengal Spice</td>
<td>No</td>
</tr>
<tr>
<td>Dave</td>
<td>The Greyhound</td>
<td>Yes</td>
</tr>
<tr>
<td>Estie</td>
<td>The Flag</td>
<td>Yes</td>
</tr>
<tr>
<td>Fred</td>
<td>Bengal Spice</td>
<td>No</td>
</tr>
<tr>
<td>Alice</td>
<td>Jardine</td>
<td>No</td>
</tr>
<tr>
<td>Fred</td>
<td>Rose and Crown</td>
<td>No</td>
</tr>
<tr>
<td>Dave</td>
<td>On the Corner</td>
<td>Yes</td>
</tr>
<tr>
<td>Bob</td>
<td>Valentino's</td>
<td>Yes</td>
</tr>
<tr>
<td>Estie</td>
<td>Black Buoy</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Algorithm 0

- Recommend to you the most popular restaurants
 - say # positive votes minus # negative votes
- Ignores your culinary preferences
 - *And* judgements of those with similar preferences
- How can we exploit the wisdom of “like-minded” people?

Another look at the input - a matrix

<table>
<thead>
<tr>
<th></th>
<th>Bengal Spice</th>
<th>Valentina's</th>
<th>Mango's</th>
<th>Bakehouse</th>
<th>The Greyhound</th>
<th>The Flag</th>
<th>Rose and Crown</th>
<th>Black Buoy</th>
<th>On the Corner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Bob</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Cindy</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Dave</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Estle</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Fred</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>
Now that we have a matrix

<table>
<thead>
<tr>
<th>Bengal</th>
<th>Valentino's</th>
<th>Jardine</th>
<th>Bakehouse</th>
<th>Greyhound</th>
<th>The Flag</th>
<th>Rose and Crown</th>
<th>The Black Buoy</th>
<th>On the corner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spice</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ab</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dy</td>
<td></td>
<td>1</td>
<td></td>
<td>-1</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ve</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>le</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ed</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

View all other entries as zeros for now.

PREFERENCE-DEFINED DATA SPACE
Similarity between two people

• Similarity between their preference vectors.
• Inner products are a good start.
• Dave has similarity 3 with Estie
 – but -2 with Cindy.
• Perhaps recommend Black Buoy to Dave
 – and Bakehouse to Bob, etc.

Algorithm 1.1

• You give me your preferences and I need to give you a recommendation.
• I find the person “most similar” to you in my database and recommend something he likes.
• Aspects to consider:
 – No attempt to discern cuisines, etc.
 – What if you’ve been to all the restaurants he has?
 – Do you want to rely on one person’s opinions?
Algorithm 1.k

• You give me your preferences and I need to give you a recommendation.
• I find the k people “most similar” to you in my database and recommend what’s most popular amongst them.
• Issues:
 – A priori unclear what k should be
 – Risks being influenced by “unlike minds”

Slightly more sophisticated attempt

• Group similar users together into clusters
• You give your preferences and seek a recommendation, then
 – Find the “nearest cluster” (what’s this?)
 – Recommend the restaurants most popular in this cluster
• Features:
 – avoids data sparsity issues
 – still no attempt to discern why you’re recommended what you’re recommended
 – how do you cluster?
CLUSTERS

• Can cluster

How do you cluster?

• Must keep similar people together in a cluster
• Separate dissimilar people
• Factors:
 – Need a notion of similarity/distance
 – Vector space? Normalization?
 – How many clusters?
 • Fixed a priori?
 • Completely data driven?
 – Avoid “trivial” clusters - too large or small
Looking beyond

Clustering people for restaurant recommendations

Clustering other things (documents, web pages)

Other approaches to recommendation

General unsupervised machine learning.

Text clustering

• Search results clustering
• Document clustering
Navigating search results

• Given the results of a search (say *jaguar*), partition into groups of related docs
 – sense disambiguation
• Approach followed by Uni Essex site
 – Kruschwitz / al Bakouri / Lungley
• Other examples: IBM InfoSphere Data Explorer
 – *(was: vivisimo.com)*

Results list clustering example

Cluster 1:
- Jaguar Motor Cars' home page
- Mike's XJS resource page
- Vermont Jaguar owners' club

Cluster 2:
- Big cats
- My summer safari trip
- Pictures of jaguars, leopards and lions

Cluster 3:
- Jacksonville Jaguars' Home Page
- AFC East Football Teams
Search results clustering: example

Why cluster documents?

- For improving recall in search applications
- For speeding up vector space retrieval
- Corpus analysis/navigation
 - Sense disambiguation in search results
Improving search recall

- **Cluster hypothesis** - Documents with similar text are related
- Ergo, to improve search recall:
 - Cluster docs in corpus a priori
 - When a query matches a doc D, also return other docs in the cluster containing D
- Hope: docs containing *automobile* returned on a query for *car* because
 - clustering grouped together docs containing *car* with those containing *automobile*.

Why might this happen?

Speeding up vector space retrieval

- In vector space retrieval, must find nearest doc vectors to query vector
- This would entail finding the similarity of the query to every doc - slow!
- By clustering docs in corpus a priori
 - find nearest docs in cluster(s) close to query
 - inexact but avoids exhaustive similarity computation

Exercise: Make up a simple example with points on a line in 2 clusters where this inexactness shows up.
Corpus analysis/navigation

• Given a corpus, partition it into groups of related docs
 – Recursively, can induce a tree of topics
 – Allows user to browse through corpus to home in on information
 – Crucial need: meaningful labels for topic nodes.

CLUSTERING DOCUMENTS IN A (VERY) LARGE COLLECTION: GOOGLE NEWS
CLUSTERING DOCUMENTS IN A VERY LARGE COLLECTION: JRC’S NEWS EXPLORER

Setup

- Given “training” docs for each category
 - Theory, AI, NLP, etc.
- Cast them into a decision space
 - generally a vector space with each doc viewed as a bag of words
- Build a classifier that will classify new docs
 - Essentially, partition the decision space
- Given a new doc, figure out which partition it falls into
Supervised vs. unsupervised learning

• This setup is called *supervised learning* in the terminology of Machine Learning
• In the domain of text, various names
 – Text classification, text categorization
 – Document classification/categorization
 – “Automatic” categorization
 – Routing, filtering ...
• In contrast, the earlier setting of clustering is called *unsupervised learning*
 – Presumes no availability of training samples
 – Clusters output may not be thematically unified.

What makes docs “related”?

• Ideal: semantic similarity.
• Practical: statistical similarity
 – We will use cosine similarity.
 – Docs as vectors.
 – For many algorithms, easier to think in terms of a distance (rather than similarity) between docs.
 – We will describe algorithms in terms of cosine similarity.
DOCUMENTS AS BAGS OF WORDS

Doc as vector

- Each doc \(j \) is a vector of \(tfidf \) values, one component for each term.
- Can normalize to unit length.
- So we have a vector space
 - terms are axes - aka \textit{features}
 - \(n \) docs live in this space
 - even with stemming, may have 10000+ dimensions
 - do we really want to use all terms?
TERM WEIGHTING IN VECTOR SPACE MODELS: THE TF.IDF MEASURE

\[tfidf_{i,k} = f_{i,k} \times \log \left(\frac{N}{df_i} \right) \]

FREQUENCY of term \(i \) in document \(k \)

Number of documents with term \(i \)

Intuition

Postulate: Documents that are “close together” in vector space talk about the same things.
Cosine similarity

Cosine similarity of D_j, D_k:

$$\text{sim}(D_j, D_k) = \sum_{i=1}^{m} w_{ij} \times w_{ik}$$

Aka normalized inner product.

Clustering: a bit of terminology

- REPRESENTATIVE
- CENTROID
- OUTLIER
Key notion: *cluster representative*

- In the algorithms to follow, will generally need a notion of a representative point in a cluster
- Representative should be some sort of “typical” or central point in the cluster, e.g.,
 - point inducing smallest radii to docs in cluster
 - smallest squared distances, etc.
 - point that is the “average” of all docs in the cluster
- Need not be a document

Key notion: *cluster centroid*

- **Centroid** of a cluster = component-wise average of vectors in a cluster - is a vector.
 - Need not be a doc.
- Centroid of (1,2,3); (4,5,6); (7,2,6) is (4,3,5).
(Outliers in centroid computation)

- Can ignore outliers when computing centroid.
- What is an outlier?
 - Lots of statistical definitions, e.g.
 - moment of point to centroid > M \(\leq \) some cluster moment.

 Say 10.

Clustering algorithms

- Partitional vs. hierarchical
- Agglomerative
- K-means
Partitional Clustering

Original Points

A Partitional Clustering

Hierarchical Clustering

Traditional Hierarchical Clustering

Traditional Dendrogram

Non-traditional Hierarchical Clustering

Non-traditional Dendrogram
A partitional clustering algorithm:
K-MEANS

• Given \(k \) - the number of clusters desired.
• Each cluster associated with a centroid.
• Each point assigned to the cluster with the closest centroid.
• Iterate.

Basic iteration

• At the start of the iteration, we have \(k \) centroids.
• Each doc assigned to the nearest centroid.
• All docs assigned to the same centroid are averaged to compute a new centroid;
 – thus have \(k \) new centroids.
Iteration example

- Docs
- Current centroids

Iteration example

- Docs
- New centroids
K-means Clustering: the full algorithm

1. Select K points as the initial centroids.
2. repeat
3. Form K clusters by assigning all points to the closest centroid.
4. Recompute the centroid of each cluster.
5. until The centroids don’t change

K-means Clustering – Details

- Initial centroids are often chosen randomly.
 - Clusters produced vary from one run to another.
- The centroid is (typically) the mean of the points in the cluster.
- ‘Closeness’ is measured by Euclidean distance, cosine similarity, correlation, etc.
- K-means will converge for common similarity measures mentioned above.
- Most of the convergence happens in the first few iterations.
 - Often the stopping condition is changed to ‘Until relatively few points change clusters’
- Complexity is $O(n \times K \times I \times d)$
 - $n =$ number of points, $K =$ number of clusters,
 $I =$ number of iterations, $d =$ number of attributes
Effect of initial choice of centroids: Two different K-means Clusterings

Importance of Choosing Initial Centroids
Termination conditions

• Several possibilities, e.g.,
 – A fixed number of iterations.
 – Doc partition unchanged.
 – Centroid positions don’t change.

Convergence

• Why should the \(k \)-means algorithm ever reach a fixed point?
 – A state in which clusters don’t change.

• \(k \)-means is a special case of a general procedure known as the EM algorithm.
 – Under reasonable conditions, known to converge.
 – Number of iterations could be large.
Exercise

• Consider running 2-means clustering on a corpus, each doc of which is from one of two different languages. What are the two clusters we would expect to see?
• Is agglomerative clustering likely to produce different results?

Evaluating K-means Clusters

• Most common measure is Sum of Squared Error (SSE)
 – For each point, the error is the distance to the nearest cluster
 – To get SSE, we square these errors and sum them.

\[
SSE = \sum_{i=1}^{K} \sum_{x \in C_i} \text{dist}^2(m_i, x)
\]

 – \(x \) is a data point in cluster \(C_i \) and \(m_i \) is the representative point for cluster \(C_i \)
 • can show that \(m \) corresponds to the center (mean) of the cluster
 – Given two clusters, we can choose the one with the smallest error
 – One easy way to reduce SSE is to increase \(K \), the number of clusters
 • A good clustering with smaller \(K \) can have a lower SSE than a poor clustering with higher \(K \)
Limitations of K-means

- K-means has problems when clusters are of differing
 - Sizes
 - Densities
 - Non-globular shapes

- K-means has problems when the data contains outliers.

Hierarchical clustering

- As clusters agglomerate, docs likely to fall into a hierarchy of “topics” or concepts.
Hierarchical Clustering

• Produces a set of nested clusters organized as a hierarchical tree
• Can be visualized as a dendrogram
 – A tree like diagram that records the sequences of merges or splits

Strengths of Hierarchical Clustering

• Do not have to assume any particular number of clusters
 – Any desired number of clusters can be obtained by ‘cutting’ the dendogram at the proper level

• They may correspond to meaningful taxonomies
 – Example in biological sciences (e.g., animal kingdom, phylogeny reconstruction, ...)
Hierarchical Clustering

- Two main types of hierarchical clustering
 - Agglomerative:
 - Start with the points as individual clusters
 - At each step, merge the closest pair of clusters until only one cluster (or k clusters) left
 - Divisive:
 - Start with one, all-inclusive cluster
 - At each step, split a cluster until each cluster contains a point (or there are k clusters)

- Traditional hierarchical algorithms use a similarity or distance matrix
 - Merge or split one cluster at a time

Agglomerative clustering

- Given target number of clusters k.
- Initially, each doc viewed as a cluster
 - start with n clusters;
- Repeat:
 - while there are > k clusters, find the “closest pair” of clusters and merge them.
“Closest pair” of clusters

- Many variants to defining closest pair of clusters
 - Clusters whose centroids are the most cosine-similar
 - ... whose “closest” points are the most cosine-similar
 - ... whose “furthest” points are the most cosine-similar

Example: $n=6$, $k=3$, closest pair of centroids
Issues

• Have to support finding closest pairs continually
 – compare all pairs?
 – Potentially n^2 cosine similarity computations
 – To avoid: use approximations.
 – “points” are changing as centroids change.
• Changes at each step are not localized
 – on a large corpus, memory management an issue
 – sometimes addressed by clustering a sample.

Hierarchical Agglomerative Clustering (HAC)

• More popular hierarchical clustering technique
• Assumes a similarity function for determining the similarity of two instances.
• Starts with all instances in a separate cluster and then repeatedly joins the two clusters that are most similar until there is only one cluster.
• The history of merging forms a binary tree or hierarchy.
Agglomerative Clustering Algorithm

• Basic algorithm is straightforward
 1. Compute the proximity matrix
 2. Let each data point be a cluster
 3. Repeat
 4. Merge the two closest clusters
 5. Update the proximity matrix
 6. Until only a single cluster remains

• Key operation is the computation of the proximity of two clusters
 – Different approaches to defining the distance between clusters distinguish the different algorithms

Starting Situation

• Start with clusters of individual points and a proximity matrix

```
p1  p2  p3  p4  p5  ...
p1  
p2  
p3  
p4  
p5  
      Proximity Matrix
```

```
p1  p2  p3  p4  p5  p6  p10  p11  p12
```

```
p1  
p2  
p3  
p4  
p6  
```
Intermediate Situation

• After some merging steps, we have some clusters

<table>
<thead>
<tr>
<th></th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>C5</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Proximity Matrix

• We want to merge the two closest clusters (C2 and C5) and update the proximity matrix.

<table>
<thead>
<tr>
<th></th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>C5</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Proximity Matrix
After Merging

• The question is “How do we update the proximity matrix?”

<table>
<thead>
<tr>
<th></th>
<th>C1</th>
<th>C3</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>C2 U C5</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>C3</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>C4</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

Proximity Matrix

How to Define Inter-Cluster Similarity

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error
How to Define Inter-Cluster Similarity

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward’s Method uses squared error

Proximity Matrix

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward’s Method uses squared error
How to Define Inter-Cluster Similarity

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

Text clustering issues and applications
List of issues/applications covered

• Term vs. document space clustering
• Multi-lingual docs
• Feature selection
• Speeding up scoring
• Building navigation structures
 – “Automatic taxonomy induction”
• Labeling

Term vs. document space

• Thus far, we clustered docs based on their similarities in terms space
• For some applications, e.g., topic analysis for inducing navigation structures, can “dualize”:
 – use docs as axes
 – represent (some) terms as vectors
 – proximity based on co-occurrence of terms in docs
 – now clustering terms, not docs
Term vs. document space

- If terms carefully chosen (say nouns)
 - fixed number of pairs for distance computation
 - independent of corpus size
 - clusters have clean descriptions in terms of noun phrase co-occurrence - easier labeling?
 - left with problem of binding docs to these clusters

Multi-lingual docs

- E.g., News Explorer, Canadian government docs.
- Every doc in English and equivalent French.
 - Must cluster by concepts rather than language
- Simplest: pad docs in one lang with dictionary equivalents in the other
 - thus each doc has a representation in both languages
- Axes are terms in both languages
Feature selection

- Which terms to use as axes for vector space?
- Huge body of (ongoing) research
- IDF is a form of feature selection
 - can exaggerate noise e.g., mis-spellings
- Pseudo-linguistic heuristics, e.g.,
 - drop stop-words
 - stemming/lemmatization
 - use only nouns/noun phrases
- Good clustering should “figure out” some of these

Labelling clusters
Labelling clusters

• After clustering algorithm finds clusters - how can they be useful to the end user?
• Need pithy label for each cluster
 – In search results, say “Football” or “Car” in the *jaguar* example.
 – In topic trees, need navigational cues.
 • Often done by hand, a posteriori.

How to Label Clusters

• Show titles of typical documents
 – Titles are easy to scan
 – Authors create them for quick scanning!
 – But you can only show a few titles which may not fully represent cluster
• Show words/phrases prominent in cluster
 – More likely to fully represent cluster
 – Use distinguishing words/phrases
 – But harder to scan
Labeling

• Common heuristics - list 5-10 most frequent terms in the centroid vector.
 – Drop stop-words; stem.
• Differential labeling by frequent terms
 – Within the cluster “Computers”, child clusters all have the word computer as frequent terms.
 – Discriminant analysis of sub-tree centroids.

The biggest issues in clustering

• How do you compare two alternatives?
• Computation (time/space) is only one metric of performance
• How do you look at the “goodness” of the clustering produced by a method
READINGS

- Ingersoll / Morton / Farris – chapter 6
- Jain et al - Data Clustering: A Review (1999)
 - Available from the module site
 - Also: http://citeseer.nj.nec.com/jain99data.html

Acknowledgments

- Many of these slides borrowed, from
 - Chris Manning’s Stanford module
 - Tan, Steinbach and Kumar, Intro to Data Mining
 - Ray Mooney’s Austin module