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P300-Based BCI Mouse With Genetically-Optimized
Analogue Control

Luca Citi, Riccardo Poli, Caterina Cinel, and Francisco Sepulveda

Abstract—In this paper we propose a brain–computer interface
(BCI) mouse based on P300 waves in electroencephalogram (EEG)
signals. The system is analogue in that at no point a binary deci-
sion is made as to whether or not a P300 was actually produced in
response to the stimuli. Instead, the 2-D motion of the pointer on
the screen, using a novel BCI paradigm, is controlled by directly
combining the amplitudes of the output produced by a filter in the
presence of different stimuli. This filter and the features to be com-
bined within it are optimised by an evolutionary algorithm.

Index Terms—Brain–computer interfaces (BCIs), genetic algo-
rithms, mouse, P300.

I. INTRODUCTION

OVER the past few years, an increasing number of studies
have evaluated the possibility of converting signals gen-

erated from the brain [especially electroencephalogram (EEG)]
into control signals for applications in various disciplines, from
virtual reality to hands-free control of augmentative commu-
nication technologies for individuals with disabilities. The re-
sulting systems go under the name of brain–computer interfaces
(BCIs).

The development of BCI is particularly important as it
could provide, for example, new technology that does not
require muscle control (e.g., [1]–[9]; see [10] for a compre-
hensive review). BCI studies have shown that nonmuscular
communication and control is possible and might serve useful
purposes for people who cannot use conventional technologies,
for example, because they are “locked-in” or lack any useful
muscle control [11]–[15]. Naturally, BCI systems can also be
used by able-bodied users although, in these cases, they tend to
complement other forms of control rather than being the only
source of input.

The signals used in BCI studies to date include P300 waves
[1] and other event related potentials (ERPs), or rhythms
[2], evoked potentials (EPs) [6], [16]–[20], event-related
desynchronization/synchronization (ERD/ERS) [3], activation
patterns induced by mental task strategies [21], slow cortical
potentials [4] recorded from the scalp, cortical neuron activity
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recorded by implanted electrodes (see [5] for a review), neu-
romagnetic signals recorded through megnetoencelography
(MEG) [7], BOLD responses recorded through functional
magnetic resonance imaging (fMRI) [8], activity-related, and
localized brain oxygenation recorded through near infrared
systems (NIRS) [9].

ERPs are relatively well-defined shape-wise variations to the
ongoing EEG elicited by a stimulus and temporally linked to
it. ERPs include an exogenous response, due to the primary
processing of the stimulus, as well as an endogenous response,
which is a reflection of higher cognitive processing induced by
the stimulus [22]. The P300 wave is a late appearing component
of ERPs with a latency of about 300 ms which is elicited by rare
and/or significant stimuli, i.e., P300 potentials are ERP compo-
nents whose presence depends on whether or not a user attends
to a rare, deviant or target stimulus. This makes it possible to
use them in BCI systems to determine user intentions.

Given the point-and-click nature of most modern user inter-
faces, an important application of BCI is controlling 2-D pointer
movements. Over the years, there have been some attempts to
develop BCI systems for this purpose, the most successful of
which, to date, being those based on the detection of or
rhythms [23], and those using invasive cortical interfaces (e.g.,
[24]). The former, however, require lengthy training periods be-
fore users can control them, while the latter are not very prac-
tical, requiring surgery, presenting risks of infections, etc. These
problems could be overcome by noninvasive systems based on
the use of P300s. To date, however, only limited successes with
this approach have been reported in [26] where rather long in-
terstimulus intervals led to the pointer moving at the rate of one
movement every 10 s, and [25] where a speed of one cursor
movement every 4 s was achieved but accuracy in detecting
P300s was only about 50%.

In this paper, a P300-based system for the 2-D control of
a cursor on a computer screen is presented. Four randomly-
flashing squares are displayed on the screen to represent four di-
rections of movement. Users devote their attention to the flashes
of the square towards which the cursor should move. This pro-
duces endogenous EEG components following each stimulus,
which the system analyses to infer the user’s intentions and
move the cursor. The system presents two unique features: it
completely dispenses with the problem of detecting P300s (a
notoriously difficult task) by logically behaving as an analogue
device (as opposed to a binary classifier), and it uses a single
trial approach where the mouse performs an action after every
trial (once per second). This has been made possible by the use
of evolutionary algorithms (EAs), which rapidly and effectively
adapt the design of the system to each user and each session.
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EAs are search and optimisation algorithms inspired by Dar-
winian evolution, which have been applied very successfully
to a large number of difficult problems with human-competi-
tive results. Here, we use a particular type of EA called the ge-
netic algorithm (GA). In GAs, a population of random tenta-
tive solutions to a problem is created and evaluated to assess
the degree to which they solve the problem at hand. New gen-
erations of individuals are created by recombining the charac-
teristics of individuals in the previous generation, giving better
performing parent solutions a higher chance of reproduction.
Generation after generation, better and better solutions emerge.
However, unlike in nature where thousands of years are neces-
sary to evolve fit individuals, in our BCI mouse running the GA
requires only minutes.

In our system, the analysis of the P300 components is pre-
ceded by a preprocessing phase in which the continuous wavelet
transform (CWT) of each EEG channel is performed. CWT is
computed at several tens of scales and times after the presen-
tation of the stimuli. So, the ERP response to each stimulus is
turned into a large array of features, which are available to the
subsequent stages of P300 processing. To avoid the well-known
problems associated to large feature sets, in the system we take
a wrapper approach to feature selection where the selection of
features and the training of the control system using them are
performed jointly by the GA. We reported promising results
with an evolutionary approach to P300 processing using data
obtained with Donchin’s speller paradigm [1] in [28]. Encour-
aged by these, we decided to extend the work and build the com-
plete BCI mouse system with real-time processing and classifi-
cation described in this paper. The system makes it possible for
a person having undergone no previous training and within min-
utes of wearing the electrode cap, to control a 2-D pointer on a
screen.

II. EXPERIMENTAL METHODS

A. Participants

After several preliminary experiments, the final design was
tested with six participants: A aged 25, B aged 28, C aged 35, D
aged 44, E aged 23, and F aged 40. Participants A–E were able
bodied, while F has Dejerine-Sottas hypertrophic neuropathy.

B. Stimuli and Protocol

Four gray rectangles are constantly superimposed on what-
ever is shown on a computer screen. They are unobtrusive, being
small and peripheral, as shown in Fig. 1. Each rectangle cor-
responds to a possible direction of movement for the mouse
cursor. Two additional rectangles, one on the lower left corner of
the screen, the other on the lower right corner of the screen, can
also be present. When they are enabled, they perform the func-
tion of the left and right buttons of an ordinary mouse. When
this function is not required, the two “button” rectangles are still
logically present, but are not physically shown on the screen to
avoid distracting the user.

At 180 ms intervals, this static display is altered by tem-
porarily changing the colour of one of the rectangles from gray
to bright red (for the rectangles controlling the direction of mo-
tion) or blue (for the rectangles representing mouse buttons).

Fig. 1. Display used to control our BCI mouse. Four rectangles at the borders
of the screen correspond to the possible directions of movement. They flash in
random order. The picture shows the display when the stimulus “up” is pre-
sented (shown in light gray in this black and white reproduction, although it is
bright red in reality). Users focus their attention on the flashes of the rectangle
corresponding to the desired direction of motion.

The stimulus remains brightly colored for 100 ms, after which
it becomes gray again. As a result, the rectangle appears to flash.
Which particular rectangle is selected for flashing is determined
randomly. However, after flashing, a rectangle is not allowed to
flash again until all other rectangles have flashed once. When
the buttons’ function is disabled, as in all the experiments re-
ported in this paper, the rectangles corresponding to the mouse
buttons are not drawn and, so, their flashing has not effect ex-
cept creating a 180-ms pause in the sequence of flashes. When
the two “button” rectangles happen to be “flashed” in sequence,
a 360-ms pause is produced instead, although this is infrequent.
As we stressed in [29], repetition blindness and other perceptual
errors often observed in rapid serial visual presentation experi-
ments can reduce the accuracy of BCI systems. To limit the risks
of this type of perceptual errors occurring in our BCI mouse, we
ensured that the last rectangle to flash in each series of 6 was
never allowed to be the first to flash in the following series.

Participants were comfortably seated on an armchair with
their neck supported by a C-shaped inflatable travel pillow to re-
duce muscular artifacts. The eyes were approximately 1 m from
the computer screen.

Participants were instructed that in order to move the mouse
pointer in a particular direction they needed to focus their atten-
tion (but not necessarily point their gaze) on the corresponding
rectangle on the screen. To facilitate this, they were asked to
count how many times that particular rectangle flashed during
a sequence of mouse movements in the same direction. Partici-
pants were asked to ignore whatever else was happening on the
screen. Note that while it is slightly easier for subjects to per-
form the task when pointing their gaze on the rectangle of in-
terest, the flashing rectangles are sufficiently conspicuous to be
easily counted via peripheral vision.

A fixation cross was always present in the middle of the
screen. We offered participants the option to point their gaze
on the fixation cross. Three of our six participants reported
to have made a conscious effort to constantly point their gaze
on the fixation cross, while focusing their attention on the
flashing rectangles. One subject reported to have pointed his
gaze halfway between the rectangle of interest and the fixation
cross.
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The system has three modes of operation. The training mode
is used for acquisition of training sets. Here, the experimenter
selects one of the rectangles on the screen as a target, and par-
ticipants are asked to focus their attention only on the target
stimulus. In this mode, the screen has a light gray background
with no stimuli other than the rectangles mentioned above. The
tracing mode is similar, in that participants perform the same
task with the same stimuli and homogeneous background. How-
ever, now signal processing, feature extraction and combination
are performed in real-time and we can show participants the tra-
jectory of the mouse pointer produced by their efforts. Feed-
back can be provided at each time step (i.e., once per second)
or after a user-settable number of time steps. Finally, in normal
use all sorts of windows and icons are present on the screen in
addition to the rectangles necessary to control the BCI mouse.
There is a variant of this mode of operation, which we call
“scrolling mode,” where instead of moving the mouse pointer
on a fixed screen we scroll the screen. This ensures that the en-
tities of interest for the user are always near the fixation cross. In
scrolling mode, we used a zoom factor of 2 to ensure maximum
readability.

Here, we only present results with the training and tracing
modes. In tracing mode, we provided visual feedback to the user
only every 30 time steps (lasting approximately 1 s each). In
these conditions, the displays and acquisition conditions in the
two modes are identical. This allowed us to do full offline anal-
ysis of performance, including cross-validation (Section IV).
Each run of our experiments involved presenting a full series
of four flashing rectangles for 30 times. The process was re-
peated for each of the four possible directions, multiple times
for each direction. Every few runs, participants were given a
few minutes to rest and stretch. For participant A, 12 runs were
recorded (three for each of the four directions) while the others
performed 16 runs (four for each direction).

C. EEG Apparatus

We used a 19 channel setup in a Mindset24 System to acquire
and digitise EEG signals. Within the device the signal is first
filtered with two order-3 analogue bandpass filters with 3 dB
band between 1.5 and 34 Hz and then sampled at 256 samples
per second. We used an electrode cap (Electrocap International)
with electrodes already prearranged according to the 10–20 in-
ternational standard. Signals are referenced to the earlobe with
the lowest impedance. Efforts were made to obtain impedances
below 7 k in all experiments.

III. PREPROCESSING AND TRANSLATION METHODS

A. Preprocessing

We used 19 channels corresponding to the 10-20 international
system to acquire EEG. Each channel is low-pass filtered using
a finite impulse response (FIR) filter of order . The
coefficients of the filter were obtained via the least mean squares
method with the transition band between Hz and

Hz. After low-pass filtering, the signal is decimated
to 128 Hz by leaving every other sample out.

B. Feature Extraction

After filtering and decimation, we compute the features to
be made available to the GA which will be responsible for fea-
ture selection and filter optimization. Our features are obtained
by performing CWT on the 19 channels. The wavelet trans-
form is defined as the inner product between a signal and
a function, known as mother wavelet, appropriately scaled and
translated. That is , where

represents the temporal shift of the wavelet, while
is the scale. We used the rbio3.3 wavelet family.

The features are extracted for each epoch of the signal. An
epoch is a 1-s window starting when a stimulus is presented. In
each epoch the system needs to process the EEG signals and
appropriately emphasize and utilize a P300, if this is present in
the epoch. Note, however, that stimuli are presented at a very fast
rate, and, so, epochs overlap. This makes the task much harder
since the late responses to a stimulus may interfere with P300s
generated by another.

Pointer control is determined by a filter (more on this later)
which is applied to each epoch. No averaging takes place. The
filter uses the coefficients of the CWT of an epoch. We use 30
different scales between 2 and 40. Scales are not equally spaced.
With a uniform scale distribution, the pseudo-frequencies cor-
responding to smaller scales are too far apart, while those cor-
responding to bigger scales are unnecessarily close. Thus, we
used the polynomial , which ap-
proximates an exponential for .

Since P300s occur within a well-known time window, we
compute CWT only for a range of relevant samples within each
epoch. These correspond to the translations for

. At our sampling frequency of 128 Hz (after
decimation), these correspond to a temporal window between
235 and 540 ms after the beginning of each epoch.

To sum up: for each epoch we process 19 channels, for each
channel we compute CWT at 30 different scales, and at each
scale we compute 40 consecutive samples. This gives us a 3-D
array of features, where indexes the channel, the
scale, and the time corresponding to a feature. In total we have

components. Such a large number of fea-
tures requires some form of feature selection. To do this, we used
a wrapper approach which involves searching for the best fea-
tures and for the best parameters for our mouse controller (the
semi-linear filter described in the next section) concurrently.
This is more demanding than performing the two tasks inde-
pendently since there is a much bigger search space to explore.
However, it also has the advantage of potentially giving the best
possible results, which is very important given the high noise
and limited information content in EEG signals and the diffi-
culty of the task. Given the size of the search space and its dis-
continuities, it appeared natural to use a robust search algorithm
such as a GA for this task. In our system, the GA needs to choose
the best features and filter parameters to control the 2-D motion
of the pointer. As described in the next section at the hearth of
our system is a semi-linear filter.
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C. Filter

Our controller performs a linear combination of a subset
of elements of the feature matrix

(1)

where is the number of terms in the filter, the coefficients
identify which component of is used in the th term,

and finally the values are coefficients weighing the relative
effect of each term. Although a linear filter may appear a sim-
plistic choice, it actually was well pondered. Extensive prelim-
inary experiments with a more general class of nonlinear fil-
ters (polynomial filters), which we used very successfully in the
treatment of other biomedical signals (e.g., in [27]), revealed
that linear terms play a predominant role in P300 exploitation
in our system, nonlinear terms appearing rarely in the evolved
filters and, when present, contributing marginally to the output.
These tests also revealed that or were good
choices.

The value is then passed through a “squashing” func-
tion to produce the filter output (squashing
functions are used to limit the output of classifiers to some pre-
defined interval). We could interpret a high value of as an
indication of the degree to which an epoch contains a target and
vice versa. In our experiments, targets are the stimuli on which
a participant is focusing his/her attention for the purpose of se-
lecting a particular direction of movement for the mouse cursor.

D. Cursor Motion Control

Every time a stimulus flashes, an epoch starts. For each epoch
the system records the position of the corresponding stimulus
on the screen and acquires and processes a 1-s segment of EEG
signal. Epochs acquired during the period of training are an-
notated also with the direction on which the participant was
focusing.

In epochs corresponding to target stimuli, we expect to find a
P300 wave, while in epochs where a nontarget stimulus flashed
this should not be present. The job of the GA is to use the in-
formation contained in the training set to evolve a filter that can
exploit the differences between these two cases and achieve cor-
rect pointer control.

Computer mice are analogue devices (the more you move the
mouse, the more the pointer on the screen moves). So, it seemed
inappropriate to turn analogue brain activity recorded in the
EEG into binary form to later turn the signal in analogue form
again (which is necessary to move the pointer on the screen).
Given the limited information available in EEG, we felt that an
analogue BCI approach would avoid any further losses intro-
duced by the detection process and would offer the potential to
use P300 amplitude information.

To obtain this, the motion of the pointer is directly determined
by the squashed output of the filter. More precisely, the vertical
motion is proportional to the difference between the output pro-
duced by the filter when processing an epoch where the up rec-
tangle was flashed and the output produced by the filter when
processing an epoch where the down rectangle was flashed. The
horizontal motion of the pointer is similarly determined by the
responses to the flashing of the right and left rectangles.

Therefore, the task of the GA is not just selecting features
and designing filters to best discriminate between P300 and
non-P300 responses, but also to do so in such a way that the
responses to pairs of stimuli provide the fastest and most pre-
cise way of moving the pointer in the desired direction. This, in
principle, allows the full exploitation of any analogue variations
present in P300s.

In order to turn P300s into mouse pointer motion, we divide
the stream of epochs into groups of four. Each group contains,
in random order, epochs corresponding to the flashing of all four
possible stimuli. As soon as a full group is acquired, the features
and the output of the function are computed for each of
the four epochs. Outputs are then squashed via the function

.
As a result of these operations, we obtain a tuple of output

values , where subscripts refer to the up, down,
left and right stimuli, respectively. These are used to compute
the motion vector for the mouse cursor on the
screen, where and .

E. Evolving Filters

The GA has the task of identifying a high-quality set of pa-
rameters for the filter in (1). These include: real-valued co-
efficients feature channels , which are integers in the set

integer feature scales in the set ;
and integer feature samples in the set . The op-
eration of feature selection is performed by the GA by choosing

tuples , while the filter training is performed by
optimizing the corresponding ’s.

The representation used is simply a concatenation of the
floating-point and integer parameters of the linear filter in (1).
We encoded both real and integer parameters as floating-point
numbers, taking care of rounding ’s, ’s and ’s to the
nearest integer before using them in (1).

As our search operators we used blend-crossover and head-
less chicken crossover. In blend crossover [30], the offspring

is obtained, component by component,
using the formula , where and
are parent individuals and, for each , a different value of is
drawn uniformly at random from the interval
being a suitable nonnegative constant. In this work, we used

. Headless chicken crossover, instead, is performed by
recombining an individual selected from the population with a
randomly generated individual.

As a selection operator, we chose tournament selection with
tournament size 3. To maximally speedup evolution we used a
steady state GA, where each individual created is immediately
inserted in the population, without waiting for a full new gener-
ation to be ready. Since the population size is constant, we used
negative tournaments (where the worst individual in the tourna-
ment is selected) as a replacement strategy. We used populations
of 50 000 individuals.

F. Fitness Function

While we were able to use a standard representation and stan-
dard genetic operators, the design of the fitness function in-
volved much more work and required numerous successive re-
finements. The final fitness function is described below.

The natural objective function for a mouse is, of course, the
extent to which the pointer was moved in the desired direction.
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So, this is clearly a necessary component in our fitness function.
However, this is not enough. For example, it is possible that the
pointer moved a great deal in the desired direction, while at the
same time drifting significantly in a direction orthogonal to the
desired one. A fitness function based on the natural objective
would reward this behavior, effectively leading to very sensi-
tive but not very precise controllers. So, clearly the problem is
multiobjective, that is we want to obtain both maximum motion
in the desired direction and minimal motion in the orthogonal
direction.

As is routinely done in these cases, to deal with this problem
we adopted a penalty method to combine the multiple objec-
tives into a single fitness measure. With this method the fitness
function is a linear combination of the objectives of the
problem, i.e., , where are appropriate coeffi-
cients (by convention ).

Naturally, the quality of a controller cannot be evaluated on
a single trial. This would not only be unrealistic (ten or more
cursor movements may be required to move the mouse to the
desired spot in a large screen) but it would also be very unreli-
able given the noise in EEG signals, and complexity of the task
at hand. So, the performance of the controller was evaluated on
the basis of its behavior over groups of 30 repetitions of a com-
mand (up, down, left or right), which we will term runs. Fur-
thermore, in order to ensure that the controller performed well
in all directions, these runs were acquired for all possible direc-
tions (and, in fact, multiple times for each direction to limit risks
of over-fitting). All the resulting trials formed the controller’s
training set.

In each of the examples in the training set, the controller pro-
duced a velocity vector. Let us call the velocity
vector produced at repetition in the th run. This vector is ex-
pressed in a reference system where the component repre-
sents the motion in the target direction, while represents the
motion produced in the direction orthogonal to the desired di-
rection.

In the mouse control problem, we used three different objec-
tives. The first objective, , assesses the extension of the mo-
tion in the target direction, the other two, and , evaluate
the motion in orthogonal direction. In particular, assesses the
average extension of the motion in such a direction at the end of
runs. It, therefore, ignores any errors that have been later can-
celled by errors with opposite sign (i.e., in the opposite direc-
tion). Instead, evaluates the average absolute error deriving
from motion orthogonal to the target direction. So, it assesses
the extent to which the trajectory towards the target is convo-
luted. These objectives are computed as follows:

where is the number of runs and is a nor-
malization factor. Since we want to maximize , but minimize

and , and is our main objective, the coefficients

and need to be negative with magnitude much smaller than
. In preliminary experiments, we found that the following set

of values worked well: and .
So, we adopted these parameters in the work reported here. The
resulting fitness function is .

IV. RESULTS

A. Evaluation of Performance

A four-fold cross-validation (three-fold for participant A) has
been applied to train the system and test its performance and
generalization ability. For each participant, a total of 16 (or 12
for participant A) runs has been split in groups of four each con-
taining one run for each direction (1–4, 5–8, etc.). Therefore,
there were four groups for each participant (three for partici-
pant A). Then two of these groups have been used as training
set while a third one as validation set. For each of the 12 com-
binations (for participants B–F), a population has been evolved
while for each of the three combinations for participant A four
populations have been evolved. So, for each participant a total
of 12 different filters have been evolved for 40 generations. Fil-
ters were allowed to use up to terms.

The three different objectives (Section III-F) have been eval-
uated for the training-set as well as for the validation-set. The
outcomes in the validation-set have in no way influenced the
evolution phase nor its termination and, therefore, can be con-
sidered a reliable index of the generalization ability of the filter
when applied to new data.

Table I shows the values of , and for filters trained
with the -fold cross validation method explained above. For
each participant, the average across the 12 evolutions, together
with the standard deviation in brackets, is reported. Standard
deviations are computed across averages, i.e., they represent the
standard error of the mean.

These results have been obtained by processing offline data
acquired with the BCI mouse in training mode where stimuli
are presented to a participant but no feedback is provided as
to the extend and direction of motion of the pointer. This is to
ensure that the cleanest possible dataset is gathered. As soon as
the acquisition of an appropriate training set is completed, the
system performs all the necessary preparatory steps, including
filtering and feature detection, for the application of the GA,
whose runs are typically successful within 30 generations. The
data preparation and the training process require between 5–10
min. The system can then be used.

It is apparent from the analysis of the results in Table I that,
despite a slight tendency to overfit, the EA was able to find sat-
isfactory solutions and all participants could move the pointer
in the target directions (as quantified by ) with very limited
lateral error at the end of a sequence of commands (quanti-
fied by ). In fact, if we consider as the amplitude of the
signal and as the standard error of the noise in our system,
then gives us an idea of the signal-to-noise ratio (SNR)
during long-distance movement of the pointer. Averaged over
our six participants, is 28.1, which gives us a good

dB on the validation set. Note that the notion
of SNR seems particularly appropriate for an analogue pointer
control system. This is because in these systems one can easily
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TABLE I
VALUES OF ! (EXTENSION OF THE MOTION IN THE TARGET DIRECTION), ! (EXTENSION OF THE MOTION IN A DIRECTION ORTHOGONAL TO THE TARGET AT

THE END OF A SEQUENCE OF TRIALS) AND ! (STEP-BY-STEP MOTION ORTHOGONAL TO THE TARGET DIRECTION) FOR FILTERS TRAINED WITH THE n-FOLD

CROSS VALIDATION. VALUES ARE AVERAGES AND STANDARD DEVIATIONS (IN BRACKETS) ACROSS 12 RUNS OF THE GA

Fig. 2. Sample long-term behavior of the BCI mouse with a fragment of data
from the training set (top trace) and the validation set (bottom trace). Every dot
in the plots corresponds to a motion vector issued by the system.

achieve any desired speed of motion by multiplying the pointer
velocity vectors by an appropriate constant. This multiplication
effectively acts as a perfect, (almost) noise-free, amplifier for
the original control signals. Like in any amplifier, the SNR of
the original signal will still have an effect on the output.

This good performance is achieved thanks to the self-cor-
recting nature of the task. That is, a mouse in an integral con-
troller, where the final position of the pointer is the result of
summing many contributions (velocity vectors) over a period of
time. For this reason, if the noise (the motion in a direction or-
thogonal to the target) has a zero mean, the noise contributions
will tend to cancel. This is what happens in our BCI mouse, as
one can easily see by comparing , which gives us an idea of
the noise on each single velocity vector, with which, instead,
gives us an indication of the residual noise at the end of a se-
quence of commands.

Fig. 2 illustrates the BCI mouse behavior at the end of a typ-
ical training run (for participant A using runs 1–4 and 9–12 as
training set and 5–8 as validation set). The top plot represents
the positions the mouse pointer took over a sequence of stimuli
in the training set. The bottom plot shows the behavior of the
mouse when using the validation set. As can be seen, in both
cases the motion of the pointer is reasonably straight and mostly
in the target direction. Note how the steps performed by our
mouse are not all of the same size and how deviations orthog-
onal to the desired direction of motion tend to cancel out. This
is a result of our analogue approach.

Although the small values of in Table I suggest good
long-distance movement precision, marked deviations from a
straight line trajectory may occur when short-distance cursor
movements are required. This is because in single trials, or over
a small number of trials, the self-correcting effects of the task are
either absent or less pronounced, respectively. Indeed, motion
in orthogonal direction (fitness value ) was for all subjects,
except for B, larger than the movement in the target direction.
In Fig. 3, we show an example of short-term behavior for each

of the subjects, for whom we plot the trajectory of the mouse
pointer when one of the filters trained by the GA is applied to a
typical groups of 15 consecutive trials in the validation set. The
corresponding values of the objective functions , and
are also indicated.

As one can see, even if the value of is comparable with
, motion in the desired direction is generally achieved even

in the short distance (except for participant F, who appears to
have had a lapse in concentration during some of the trials).
However, lateral deviations from a desired trajectory, such as
those observable in Figs. 2 and 3 could be easily compensated by
a participant by simply focusing attention on stimuli orthogonal
to the desired direction of motion for some flashes. This was not
allowed, however, during the acquisition of the data shown in
Figures 2 and 3 nor in any other phase of training and validation.

B. Strengths of the Analogue Approach

These results strongly suggest that our analogue approach is
viable. One might wonder, however, exactly how the system op-
erates. To explain this, we will use a representative example ex-
tracted from the validation set for Subject A. In this example
the system had evolved the filter

, which corresponds to

(2)

if one maps electrode numbers to channel names and performs
the scalings and time-shifts described in Section III-B.

To better understand how this operates, we consider an ap-
proximation. Let us ignore the one-sample shift between chan-
nels Cz and P3 and let us neglect the terms involving channels
F8 and C3. The remaining terms are the result of convolving the
corresponding signal with the mother wavelet at scale .
Because CWT is linear, we could calculate the sum of these
terms by first computing a linear combination of the raw sig-
nals from channels Cz and P3, and then convolving the result
with such a wavelet. To give an idea of what this might look like
for the example discussed above, we provide it in Fig. 4 for the
epochs corresponding to the flashing of our four stimuli. Inter-
estingly, all signals plotted appear to be markedly less noisy than
the original channels. In addition, the P300 component present
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Fig. 3. Plot of the trajectory of the mouse pointer when filters trained by the GA are applied to 15 typical consecutive trials in the validation set. For each trajectory,
we also show the values of ! ; ! , and ! .

Fig. 4. Linear combination 0:4210 � Cz � 0:5247 � P3 after the flashing of the up, right (target), left, and down rectangles.

when the target stimulus was flashed (the right rectangle) ap-
pears to be better delineated.

As shown in Fig. 5, after convolution with the wavelet, only
the signal corresponding to the flashing of the right rectangle
presents an ample positive wave in the P300 area. All other sig-
nals present a negative wave in the same region. In addition,
the up and down signals remain almost identical well until after
the P300 region. After squashing and pairwise subtraction, the
signals in this approximate model are almost identical to those
provided by the full (2), particularly in the region around the
origin (where the signal is sampled to move the mouse pointer).

This analysis indicates that effectively the crucial compo-
nent in the filter evolved by the GA is the weighted difference

, which appear to provide better
information on the user’s intentions that any of the channels
separately. We believe that the other channels are used to min-
imize exogenous errors. Particularly, channel F8 appears to be
used to inhibit pointer motion when participants performed oc-
ular movements or blinked.

C. Statistical Analysis of Channels and Wavelets Used

Because the system adjusts to different users by using a sto-
chastic search technique—a GA—in different runs one obtains

different features sets and filter coefficients. So, it is interesting
to look at which channels and which CWT times and scales are
commonly used in solutions found by the GA. Fig. 6 shows his-
tograms of these quantities for subject A. The histograms plot
the fraction of times a given parameter value (channel, scale,
time shift) was selected in one term of our filter in the cross-val-
idation scheme. Note that since our filters had four terms, a fre-
quency of 25% would mean than on average each evolved filter
used a particular channel, scale or time shift. This is the case, for
example, for channel P3 and for a time-shift of 300 ms. These
distributions confirm, for example, that the filter in (2) is in fact
typical. The most frequently used CWT parameters point di-
rectly to the wavelet shown in Fig. 8, which, as we discuss in
the next section, matches almost perfectly the template of P300
reported in [31] when distorted by our device.

V. DISCUSSION

In this paper, we have presented a BCI system for the 2-D
control of a cursor on a computer screen which requires no
prior user training. Some of the techniques used in the present
work are well-established technology. However, unlike previous
approaches, we offer several novel features, which allow our
system to deliver significantly better performance than other
2-D pointer control systems based on P300s.
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Fig. 5. Result of convolving the signals in Fig. 4 with the wavelet with scale a = 21:2 (up, down, left, and right plots). The signals are then squashed (atan(up),
atan(down), atan(left), and atan(right) plots) and subtracted pairwise to obtain an approximation of the actual motion of the pointer.

Fig. 6. Channels (left), scales (center), and time shifts (right) selected by the GA for subject A. Light gray indicates negative coefficients for a channel. For the
scales diagram, we give three abscissas: the parameter “s,” the scale “a,” and the pseudofrequency “pf.”

First, most P300-based BCI systems require a binary clas-
sification of the response to each of a set of stimuli as target
or nontarget. Instead, in our system the vertical component of
the movement is determined by the difference between a filter’s
output resulting from the stimuli up and down, while the hor-
izontal component is similarly determined by the responses to
the stimuli right and left. That is, logically our BCI mouse is an
analogue (as opposed to digital) device (although physically all
its signal processing is digital).

Second, the reliable detection of P300s in a single trial is still
very difficult. In most systems an action is performed only when
the system is reasonably certain as to the intentions of the user.
However, this requires averaging over multiple presentations of
the stimuli, avoiding high stimulus-presentation rates or both,
which in turn reduces the bit rate of the system. In this work,
instead, we take a single trial approach and we use a high pre-
sentation rate. That is, our BCI mouse performs an action at the
end of every cycle of stimulus presentation and this happens ap-
proximately once per second. This is possible also thanks to the
self-correcting nature of the task.

Finally, we use these novel characteristics in conjunction with
state-of-the-art EAs, which effectively adapt the design of the
system to each user and each session, thereby maximizing per-
formance. This evolutionary adaptation is particularly powerful
because it also performs the all-important phase of feature selec-
tion (jointly with the phase of parameter tuning) which is critical
for a system with tens of thousands of features such as ours.

The main purpose of this study was to explore the advantages
and limits of analogue control in a P300-based BCI. This re-
quired to use standardized conditions across multiple users. In
these tests, the performance of our BCI mouse were very en-
couraging. Control in tracing mode (validation) was accurate
and all participants were able to use the system within minutes
of wearing the electrode cap. In the rest of this section, we ad-
dress the issue of whether or not our system is based on P300s
and we indicate problems that still require addressing.

A. Is Our Mouse P300-Based?

It is clear that we have created an “odd ball” paradigm in our
display, a paradigm that facilitates the elicitation of the P300 by



CITI et al.: P300-BASED BCI MOUSE WITH GENETICALLY-OPTIMIZED ANALOGUE CONTROL 59

Fig. 7. Average of all the ERP related to flashes that caused a cursor movement
in their direction (thin solid line) and average of the opposite direction (dashed
line). Recordings are related to subject A, channel Cz, and the averages com-
prise 338 epochs. Mother wavelet “rbio3.3” (gain �12, scale 22.5, centred at
approximately 300 ms) is also shown (thick solid line). This family was chosen
because of its similarity with the signal to match. Note the inversion of the ver-
tical axis (usual in ERP studies).

Fig. 8. Effects of the hardware filter in our EEG acquisition device. In the upper
part of the figure we show an example of a waveform that could be used as a
template for an ERP containing a P300 component (solid line, adapted with per-
mission from [31] and shifter vertically for clarity) and a corresponding signal
where there is no P300 (dashed line). Solid thin line in the lower part of the
figure is the result of processing the signal containing the P300 with a software
filter similar to the hardware filter of the EEG device (lowpass 34 Hz, highpass
1.5 Hz at �3 dB; �0:9 Hz at �6 dB). Finally, the thick line represents the
mother wavelet “rbio3.3” as in Fig. 7.

deviant events. However, one might wonder whether our system
does indeed have a P300 as the deciding factor for the output
of the system. This question is particularly relevant since the
recording bandwidth of many EEG acquisition devices (e.g., our
Mindset24) misses some high energy spectral components of
P300 [32]. With our bandwidth between 1.5–34Hz, in principle
it would be possible that the “features” that drive our BCI mouse
had little to do with the P300. The most natural way to check
for this is perhaps to sort all the flashes into groups that did, and

did not, cause a cursor movement in their direction. If pointer
control was achieved through the use of P300s, then averaging
the data within the groups should yield traditional ERPs where
the P300 will be elicited by those targets in whose direction
the filter sent the cursor. Indeed this is exactly what happens
in our experiments. For example, Fig. 7 compares the average
of all the ERP epochs for participant A related to flashes that
caused a cursor movement in their direction against the average
of the ERP epochs in the opposite direction for channel Cz. The
plots for the “odd ball” stimuli are similar to those reported in
other P300 studies such as the one obtained by Sellers [31], and
reported in Fig. 8 for comparison.

Having established that P300s are indeed elicited by our
stimuli, the question then is: how can the system exploit P300s if
our acquisition hardware cuts off frequencies below 1.5 Hz (see
Section II-C)? To answer this question we need to understand
how a typical P300 is altered by a band-pass acquisition filter.
Clearly, the shape of the P300 will be significantly deformed.
For example, the output must have zero-mean, while the orig-
inal P300 typically does not. So, we should expect the acquired
signal will show ample oscillations around zero. Indeed this
is what happens. In Fig. 8, we show the result of applying a
software band-pass filter with the same characteristics as the
hardware filter in the Mindset24 to the typical P300 reported
in [31]. As the figure shows, although the shape of the P300 is
considerably distorted, it is matched very well by the shape of
the rbio3.3 family of wavelets used in our system. In particular,
the similarity with the wavelet with scale and centred
at approximately 300 ms is striking (note how these values
almost exactly coincide with the peaks of the distributions in
Fig. 6). It is then not surprising that, despite the distortions in
the P300s, the system could reliably extract relevant control
information from these.

As we mentioned in Section II-B, in our experiments we en-
couraged participants to point their gaze on the fixation cross in
the middle of the screen. However, no mechanism to either en-
force this or to quantify the degree to which this was achieved
was put in place. So, like for many other P300 based systems
presented in the literature, one might wonder to what extent the
performance of the system depends on gaze shifts and whether
the system would work without gaze control. In short, is our
BCI system independent (in the sense of not being dependent on
peripheral muscles and nerves and relying primarily on central
nervous system activity)? We cannot exclude that some com-
ponents generated by visual pursuit were indeed used in some
of our evolved filters. However, the previous two observations
(in conjunction with the effective predominant use of channels
where P300s are best observed and of scales for the wavelets
that match P300 shapes after band-pass deformation) strongly
suggest that, indeed, the system is an independent BCI. This
is further corroborated by the fact that the system worked well
also for the three participants who made a conscious and con-
stant effort to point their gaze to the fixation cross during the
experiments.

Further evidence that this is an independent interface comes
from the fact that relevant EEG epochs did not show eye move-
ment artefacts, even in frontal channels, which would have been
evident had visual pursuit taken place during a trial.
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B. Open Problems

The system is accurate in moving the mouse pointer in the
standard four directions, particularly over long distances. How-
ever, when using computer mice, it is common to move the
pointer in diagonal directions. This was achieved in our tests
with participant D (not reported), by switching attention from
one target to another periodically, so as to obtain a sort of zig-
zagging movement. Nevertheless, it would be desirable to have
a more direct and effective way to move diagonally. An obvious
way to achieve diagonal motion would be to add four additional
flashing rectangles at the corners of the screen. But, there might
be another, more natural solution. Our mouse is analogue and so,
in principle, it would not be impossible to achieve oblique move-
ment if a user was able to concentrate his or her attention on two
squares (e.g., up and right, right and down, etc.) at the same time,
thereby producing P300 components both for horizontal motion
and vertical motion. More research on this is needed.

After training and validation, the BCI mouse can be used
in tracing mode with immediate feedback. In these conditions
the motion of the pointer, which always starts from the middle
of the screen, can distract the user, who will occasionally per-
form visual pursuit to check whether or not the desired motion
is achieved. These visual pursuit movements immediately gen-
erate myoelectric artifacts in the signals being acquired which
result in some, otherwise valid commands, to be misinterpreted.
Also, once distracted, users may find it difficult to immediately
refocus their attention on the stimuli. In informal testing we have
noticed that these effects resulted in a worsening of the ability
to control the pointer. The situation may be even worse when
the screen contains numerous elements of interest for the user or
when the system is used to with a user interface including icons,
windows, etc. Future research will need to explore methods to
mitigate these effects.

The concentration required to operate our BCI mouse is con-
siderable. We believe its cognitive load is no different from the
effort required to operate other BCI systems, but in future re-
search we will need to evaluate the usability of the BCI mouse
with purposely designed experiments.

VI. CONCLUSION

We have proposed a BCI mouse based on P300 waves. The
system is analogue: at no point a binary decision is made as
to whether or not a P300 was actually produced in response to
a stimulus. Instead, the motion of the pointer on the screen is
controlled by directly combining the amplitudes of the output
produced by a filter in the presence of different stimuli.

Beyond providing carefully designed stimuli, a rich set of fea-
tures and a very flexible combination mechanism through which
we thought a solution to the problem of controlling a pointer via
EEG could be found, we actually did not do any other design.
The biggest part of the design in this system (i.e., the feature
selection and the selection of the parameters of the controller)
was entirely left to a genetic algorithm. The performance of our
system has been very encouraging. All participants have been
able to use the system quickly. The GA was effective and effi-
cient at finding good designs for the system. Indeed, it succeed
in every run, suggesting that we had chosen the infrastructure

for the system and the feature set reasonably well. In validation,
the trajectories of the pointer have achieved high accuracy. The
system issues control commands at a much faster rate than other
P300-based computer mice previously reported.

These encouraging results indicate that there is a lot more
information about user intentions in EEG signals, and that, per-
haps, traditional design techniques may be a limiting factor.

REFERENCES

[1] L. A. Farwell and E. Donchin, “Talking off the top of your head: Toward
a mental prosthesis utilizing event-related brain potentials,” Electroen-
ceph. Clin. Neurophysiol., vol. 70, pp. 510–523, 1988.

[2] J. R. Wolpaw and D. J. McFarland, “An eeg-based brain-computer in-
terface for cursor control,” Electroenceph. Clin. Neurophysiol., vol. 78,
pp. 252–259, 1991.

[3] G. Pfurtscheller, D. Flotzinger, and J. Kalcher, “Brain-computer inter-
face—A new communication device for handicapped people,” J. Mi-
crocomput. Applicat., pp. 293–299, 1993.

[4] N. Birbaumer, N. Ghanayim, T. Hinterberger, I. Iversen, B.
Kotchoubey, A. Kübler, J. Perelmouter, E. Taub, and H. Flor, “A
spelling device for the paralysed,” Appl Opt, vol. 398, no. 6725, pp.
297–298, Mar. 25, 1999.

[5] A. B. Schwartz, “Cortical neural prosthetics,” Annu. Rev. Neurosci.,
vol. 27, pp. 487–507, Jul. 2004.

[6] S. Kelly, E. Lalor, R. Reilly, and J. Foxe, “Visual spatial attention
tracking using high-density SSVEP data for independent brain-com-
puter communication,” IEEE Trans. Neural Syst. Rehabil. Eng., vol.
13, no. 2, pp. 172–178, Jun. 2005.

[7] A. Georgopoulos, F. Langheim, A. Leuthold, and A. Merkle, “Mag-
netoencephalographic signals predict movement trajectory in space,”
Exp. Brain Res., pp. 1–4, Jul. 2005.

[8] N. Weiskopf, K. Mathiak, S. W. Bock, F. Scharnowski, R. Veit, W.
Grodd, R. Goebel, and N. Birbaumer, “Principles of a brain-computer
interface (BCI) based on real-time functional magnetic resonance
imaging (fmri),” IEEE Trans. Biomed. Eng., vol. 51, no. 6, pp.
966–970, Jun. 2004.

[9] S. Coyle, T. Ward, C. Markham, and G. McDarby, “On the suitability
of near-infrared (NIR) systems for next-generation brain-computer in-
terfaces,” Physiol. Meas., vol. 25, pp. 815–822, Aug. 2004.

[10] J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and T.
M. Vaughan, “Brain-computer interfaces for communication and con-
trol,” Clin. Neurophysiol., vol. 113, no. 6, pp. 767–791, Jun. 2002.

[11] N. Birbaumer, T. Hinterberger, A. Kubler, and N. Neumann, “The
thought-translation device (TTD): Neurobehavioral mechanisms and
clinical outcome,” IEEE Trans. Neural Syst. Rehab. Eng., vol. 11, no.
2, pp. 120–123, Jun. 2003.

[12] J. R. Wolpaw and D. J. McFarland, “Control of a two-dimensional
movement signal by a noninvasive brain-computer interface in hu-
mans,” Proc. Nat. Acad. Sci. USA, vol. 101, no. 51, pp. 17 849–17
854, Dec. 2004.

[13] A. Kübler, F. Nijboer, J. Mellinger, T. M. Vaughan, H. Pawelzik, G.
Schalk, D. J. McFarland, N. Birbaumer, and J. R. Wolpaw, “Patients
with ALS can use sensorimotor rhythms to operate a brain-computer
interface,” Neurology, vol. 64, no. 10, pp. 1775–1777, 2005.

[14] G. R. Müller-Putz, R. Scherer, G. Pfurtscheller, and R. Rupp, “EEG-
based neuroprosthesis control: A step towards clinical practice,” Neu-
rosci. Lett., vol. 382, pp. 169–174, 2005.

[15] E. W. Sellers and E. Donchin, “A P300-based brain-computer inter-
face: Initial tests by ALS patients,” Clin. Neurophysiol., vol. 117, pp.
538–548, 2006.

[16] E. E. Sutter, “The brain response interface: Communication through
visually induced electrical brain responses,” J. Microcomp. App., vol.
15, pp. 31–45, 1992.

[17] M. Middendorf, G. McMillan, G. Calhoun, and K. S. Jones,
“Brain-computer interfaces based on steady-state visual evoked
response,” IEEE Trans. Rehabil. Eng., vol. 8, no. 2, pp. 211–213, Jun.
2000.

[18] J. Hill, T. Lal, M. Schröder, T. Hinterberger, N. Birbaumer, and B.
Schölkopf, “Selective attention to auditory stimuli: A brain-computer
interface paradigm,” in Proc. 7th Tübingen Perception Conf., 2004, p.
102.

[19] Y. Wang, R. Wang, X. Gao, B. Hong, and S. Gai, “A practical vep-
based brain-computer interface,” IEEE Trans. Neural Syst. Rehabil.
Eng., vol. 14, no. 2, pp. 234–239, 2006.



CITI et al.: P300-BASED BCI MOUSE WITH GENETICALLY-OPTIMIZED ANALOGUE CONTROL 61

[20] G. R. Müller, R. Scherer, C. Neuper, and G. Pfurtscheller, “Steady-
state somatosensori evoked potentials: Suitable brain signals for brain-
computer interfaces?,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 14,
no. 1, pp. 30–37, 2006.

[21] E. A. Curran and M. J. Stokes, “Learning to control brain activity: A
review of the production and control of EEG components for driving
brain-computer interface (BCI) systems,” Brain Cogn., vol. 51, pp.
326–336, 2003.

[22] E. Donchin and M. G. H. Coles, “Is the P300 component a manifes-
tation of context updating?,” Behav. Brain Sci., vol. 11, pp. 355–372,
1988.

[23] E. Donchin and M. G. H. Coles, “Control of a two-dimensional move-
ment signal by a noninvasive brain-computer interface in humans,”
Proc. Natl. Acad. Sci., vol. 101, no. 51, pp. 17 849–17 854, 2004.

[24] J. P. Donoghue, “Connecting cortex to machines: Recent advances in
brain interfaces,” Nat. Neurosci., vol. 5, pp. 1085–1088, Nov. 2002.

[25] J. B. Polikoff, H. T. Bunnell, and W. J. B. Jr., “Toward a P300-based
computer interface,” in Proc. Rehab. Eng. Assistive Technol. Soc.
North America (RESNA’95). Arlington, Va: RENSA Press, 1995,
pp. 178–180.

[26] F. Beverina, G. Palmas, S. Silvoni, F. Piccione, and S. Giove, “User
adaptive bcis: SSVEP and P300 based interfaces,” Psych. J., vol. 1, no.
4, pp. 331–354, 2003.

[27] R. Poli, S. Cagnoni, and G. Valli, “Genetic design of optimum linear
and non-linear QRS detectors,” IEEE Trans. Biomed. Eng., vol. 42, no.
11, pp. 1137–1141, Nov. 1995.

[28] L. Citi, R. Poli, and F. Sepulveda, “An evolutionary approach to fea-
ture selection and classification in P300-based BCI,” Biomedizinische
Technik, vol. 49, pp. 41–42, 2004, Proceedings of 2nd International
BCI workshop and Training Course.

[29] C. Cinel, R. Poli, and L. Citi, “Possible sources of perceptual errors
in P300-based speller paradigm,” Biomedizinische Technik, vol. 49,
pp. 39–40, 2004, Proceedings of 2nd International BCI workshop and
Training Course.

[30] L. J. Eshelman and J. D. Schaffer, “Real-coded genetic algorithms
and interval schemata,” in Foundations of Genetic Algorithms 2, L. D.
Whitley, Ed. San Mateo, CA: Morgan Kaufmann, 1993.

[31] E. W. Sellers, “A P300-based brain-computer interface: Testing an al-
ternative method of communication,” Ph.D. dissertation, Dept. Psy-
chology, College of Arts and Sciences, Univ. South Florida, , 2004.

[32] C. Duncan-Johnson and E. Donchin, “The time constant in P300
recording,” Psychophysiol, vol. 16, pp. 53–55, 1979.

Luca Citi received the B.Sc. and M.Sc. degrees
(Summa Cum Laude) in electronic engineering
from the University of Florence, Florence, Italy.
He is currently working toward the Ph.D. degree
in biorobotics at the IMT Institute for Advanced
Studies, Lucca, Italy.

His research focuses on noninvasive, indepen-
dent, brain–machine interfaces for the control of
robotic devices, signal processing analysis of neural
signals recorded by means of invasive peripheral
longitudinal intrafascicular interfaces (LIFEs) for

the control of a prosthetic hand, evolving components detector in event related
potentials by means of particle swarm optimization and evolutionary methods
and application of the former to a P300-based brain–computer interface.

Mr. Citi received the ‘‘Giuseppe Francini’’ prize from the Italian National
Bioengineering Group for “an original and innovative graduation thesis in
bioengineering.”

Riccardo Poli He is a professor in the Depart-
ment of Computing and Electronic Systems, the
University of Essex, Colchester, U.K. His main
research interests include genetic programming,
particle swarm optimization, the theory of evolu-
tionary algorithms, and biomedical engineering.
He has published over 230 refereed papers on
evolutionary algorithms, biomedical engineering,
neural networks, and image/signal processing. He
has coauthored the book “Foundations of Genetic
Programming” (Springer, 2002). He has been Chair

of numerous international conferences. He is an Associate Editor of the
Evolutionary Computation journal, the Genetic Programming and Evolvable
Machines journal and the International Journal of Computational Intelligence
Research, an advisory board member for the Journal of Artificial Evolution and
Applications and a member of the editorial board of Swarm Intelligence. He
has been one of the funding members of the Brain–Computer Interfaces Group
at the University of Essex.

He is a Senior Fellow of The International Society for Genetic and Evolu-
tionary Computation (now ACM SIGEVO) and a recipient of the Evo* award
for outstanding contributions to the field of evolutionary computation.

Caterina Cinel received the Laurea in general and
experimental psychology from the University of
Padua, Padua, Italy, in 1996, and the M.Sc. degree in
cognitive science and the Ph.D. degree in psychology
from the University of Birmingham, Birmingham,
U.K., in 1998 and 2002, respectively.

Since 2002, she has been a Senior Research Of-
ficer in the Department of Psychology of the Univer-
sity of Essex, Colchester, U.K. She has been one of
the members of the Brain-Computer Interfaces Group
at the University of Essex since 2003. Her main re-

search interests include attention, multisensory integration and memory, con-
nectionist modelling, and brain–computer interfaces (particularly their psycho-
logical aspects).

Francisco Sepulveda (M’99) received the B.Sc.
degree in nuclear engineering from the University
of California, Santa Barbara (with ‘‘The outstanding
graduating senior’’ award), in 1988, the M.Sc.
degree in bioengineering from Clemson University,
Clemson, SC, in 1990, and the Ph.D. degree (Summa
Cum Laude) in biomedical engineering from Uni-
camp, Brazil (with a fellowship at the University of
Strathclyde, Glasgow, U.K.), in 1996.

He coordinates the Brain–Computer Interfaces
Group at the University of Essex, Colchester, U.K.

His interests are in the fields of biomedical signals and systems, machine intel-
ligence, neuroscience, and affective computing. Before moving to Essex, U.K.,
in 2002, he held academic posts in neural engineering at Aalborg University,
Denmark, and at Unicamp, Brazil.


