
BT Technol J Vol 16 No 3 July 1998

145

YPA — an intelligent directory enquiry assistant

A De Roeck, U Kruschwitz, P Neal, P Scott, S Steel, R Turner and N Webb

The YPA project is building a system to make the information in classified directories more accessible. BT’s Yellow Pages®1

provides an example of a classified database with which this work would be useful.

There are two reasons for doing this: (i) directories like Yellow Pages contain much useful but hard-to-access information,
especially in the free text in semi-display advertisements; (ii) more generally, the project is a demonstrator for exploitation
of semi-structured data — data that is less systematic than database entries or logical clauses, but more systematic than free
text because it has been marked up, for display or some other purpose.

Accessing the directory source data file requires both natural language processing (for softening the interface to the system,
and separately for analysis of natural-language-like constructs in the data) and information retrieval techniques, which are
assisted by shallow knowledge. Deep world knowledge is impractical.

The project seeks to get maximum effect from conveniently simplified approximations of standard natural language
processing and knowledge representation. The paper gives an overview of the system, and illustrates its style with points
about how the source data file is analysed. The YPA requires further development, but already demonstrates the effectiveness
of shallow processing applied to semi-structured data.

1. Introduction

Accessing classified directories via the YPA should
allow a user to conduct a natural language dialogue in order
to retrieve addresses and telephone numbers, but compared
to the paper version of the directory there are some
important differences. Rather than looking up a specific
category or company name, the YPA should make extensive

use of knowledge not contained in the category information,
as in the following example:

I need a plumber with an emergency service.

In this case, the conventional look-up of addresses
seems to be quite straightforward, but will probably yield a
long list of plumbers which will have to be checked
individually to find whether they offer an emergency
service. But now consider:

Where can I buy teaspoons?

If there is no mention of teaspoons in the local classified
directory, a look-up fails. Most commercial directory
enquiry systems cannot deliver satisfactory results in these
cases. This is the sort of information one does not
necessarily get from the classification but which is usually
hidden in the free text of the advertisements. Worse, it may
not even exist explicitly in the directory source data.
However, the YPA can find cutlery if it has some world
knowledge — employing synonymy and cross-reference, it
maps unknown input (teaspoons) to possibly relevant terms
occurring in the classified directory (cutlery).

The YPA is a language engineering project for building
an intelligent directory enquiry assistant where various

techniques and resources are combined in a realistic
application. It uses well-established natural language
processing (NLP) and information retrieval (IR) techniques;
its contribution lies in the way they are put together and the
software engineering problems encountered while doing
this. The major novelty resides in the way these techniques
are applied to semi-structured data, using a sophisticated
combination of NLP and IR after an extensive
preprocessing of the given data sources. The YPA requires
further development, but this paper describes the current
working prototype which already demonstrates the
effectiveness of shallow processing applied to semi-
structured data.

1 Yellow Pages® and Talking Pages® are registered trade marks of British
Telecommunications plc in the United Kingdom.

AN INTELLIGENT DIRECTORY ENQUIRY ASSISTANT

BT Technol J Vol 16 No 3 July 1998

146

The classified directory source data file is not a purely
relational address database. It contains additional
information which suggests a more information retrieval
based approach for accessing the addresses. This additional
information comes, for example, as so-called free text with
various address entries (e.g. 24-hour emergency service).

From the engineering point of view, the off-line
construction of the back-end database (extracting as much
information as possible) seems to be a crucial point. After
all, the user acceptance of the on-line system largely
depends on the sort and structure of data that can be
employed in the dialogue.

The remainder of this paper is structured as follows.
Firstly, the background of the project is briefly sketched and
an overview is given of the YPA system, highlighting some
of its components (sections 2 and 3). After that the structure
of the source data file to be exploited is examined in section
4. Section 5 explains the automatic off-line construction of
the back-end in some detail, and section 6 focuses on recent
experiences and integration. Finally there is an outlook on
future work.

2. Aims and related work

• the functionality of Talking Pages (where a user can
call to find out addresses listed in Yellow Pages),

• coverage of all the Yellow Pages classified data,

• a user-friendly dialogue.

Based on these aims, it can be assumed that a user
knows what the classified directories are and that the user is
co-operative and truly interested in a set of addresses. Also
a scenario is assumed where the YPA works as an on-line
system to be accessed via the Web, though this should be a
flexible aim. Various systems address the same issues, but
these tend to be more concerned with either front-end or
back-end, or less concerned with a particular application.

Most natural language dialogue systems are concerned
with the problem of schedules or time [1—5], something
that does not apply to the YPA. More closely related to the
YPA is the Voyager dialogue system [6—8] which deals
with addresses from NYNEX Yellow Pages. However, as
noted above, this project uses source data that is more than a
pure address database. Hence it seems there are IR systems
that are even more closely related. This paper uses concepts
related to those in Strzalkowski [9] and Strzalkowski et al
[10]. On the other hand, it did not make sense only to follow
the IR approach for this project since these concepts are
highly statistical and require large quantities of data, and the

local classified directories are normally small in size.
Furthermore, flat IR would overlook much of the
information and structure it does have.

A number of on-line directory enquiry systems are
actually in use, e.g. Freepages (UK) 2, NYNEX Yellow
Pages (USA)3, BigBook (USA) 4 and Switchboard (USA) 5.

These types of commercial system function quite
differently from the previously mentioned NLP or IR
systems. While they access large address databases of the
same sort as those with which this project is dealing, they all
share a number of limitations it is hoped to address with the
development of the YPA:

• a very flat front-end which at most offers pattern
matching (e.g. Freepages does not even allow the use
of plurals),

• a very simple look-up database which does not permit
the access of free text hidden in the addresses,

• the inability to cope with words not found in the
database (i.e. in the categories or names).

Therefore the YPA has a heterogeneous structure which
employs NLP as well as IR ideas. Naturally this is important
in the on-line dialogue, but it also affects the modular
design of the system and the off-line construction of the
back-end.

3. System overview

A conversation cycle with the YPA can be roughly
described as follows. A user utterance (recognized by the
speech recognition or typed in via the graphical user
interface) is sent to the Dialogue Manager. The Dialogue
Manager keeps track of the current stage in the dialogue and
controls the use of several sub-modules. Before handing
back control (together with the relevant data) to the
Toplevel, the input is first sent to the parser which returns a
so-called slot-and-filler query. The Dialogue Manager then
consults the query construction component, passing to it the
result of the parsing process (possibly modified depending
on the dialogue history, etc). The purpose of the query
construction component is to transform the input into a
database query (making use of the back-end and possibly
the world model), to query the back-end and to return the
retrieved addresses (and some database information) to the
Dialogue Manager. Finally the Dialogue Manager hands

In order to have a base for evaluation the aims of the YPA
have to be defined. The final system is most importantly

characterised by:

2 http://www.freepages.co.uk
3 http://www.bigyellow.com
4 http://www.bigbook.com
5 http://www.switchboard.com

The YPA is an interactive system. Figure 1 is an
overview of the system architecture (depicting the data

flow).

AN INTELLIGENT DIRECTORY ENQUIRY ASSISTANT

BT Technol J Vol 16 No 3 July 1998

147

back control to the Toplevel which, for example, displays
the retrieved addresses. It could also put questions to the
user which were passed to it by the Dialogue Manager, if
the database access had not been successful (i.e. did not
result in a set of addresses). At this stage the cycle starts
again.

While the main focus is the back-end, a sketch of other
modules will be given in the next sections in order to give a
context.

3.1 The Dialogue Manager

The Dialogue Manager plays an important role by
controlling the access to the various modules. The overall
architecture of the Dialogue Manager is very similar to the
PURE system (see Agarwal [11]).

The user input is passed to the Dialogue Manager,
which calls the parser and, depending on the result, decides
whether, for instance, the database should be accessed (by
calling the query construction component) or whether the
dialogue should be restarted.

The interaction between user and machine for
processing one query can be roughly summarised as a
filling of different slots in a slot-and-filler query with the
information extracted from the user input, so that the
database access finally retrieves an acceptable set of entries.
In this process, the Dialogue Manager is the vital control
module. Each stage in the dialogue with the user is
characterised by a dialogue state, starting with the initial

state. Every time the Dialogue Manager is called, it
performs the following tasks:

• calling the parser,

• evaluating the parsed input and determining the new
state of the dialogue, i.e. the new dialogue history,

• performing all actions corresponding to the state
transition.

The actions performed might include calling the query
construction component and passing the current slot-and-
filler query as an argument.

The Dialogue Manager consists of a core Dialogue
Manager which is the domain-independent heart of the
system and an extension (also domain-independent) which
adds the basic functionality of a Dialogue Manager to a
frame-based approach and which is called the default
Dialogue Manager. The administrator has to:

• set interfaces to the core Dialogue Manager and the
default Dialogue Manager,

• customise the system for the specific application.

The general idea about a domain-independent basic
Dialogue Manager is to have a core Dialogue Manager that
covers all tasks to be handled by any similar dialogue
system without having to access the database system. It
should detect:

• that a user wants to quit (or restart) the dialogue,

• meta queries (where the user asks for some help, etc),

• that a user uttered some correction.

The default Dialogue Manager is this core engine
expanded by adding coverage of the other states that can
occur in a general spoken dialogue system:

• mandatory slots (which must be filled in order to
submit a query to the database system) are not filled,

• unknown concepts occurred in the input,

• inconsistency occurred,

• a database access was successful,

Toplevel

GUI
speech

recognition

parser

query
construction
component

world
model

backend

Dialogue
Manager

Fig 1 Architecture of the YPA.

AN INTELLIGENT DIRECTORY ENQUIRY ASSISTANT

BT Technol J Vol 16 No 3 July 1998

148

• a database access results in too many matches,

• a database access results in too few matches.

This outline compares to the two-layered dialogue
architecture in Agarwal [11], where the default Dialogue
Manager covers the upper layer of dialogue states, and
where customisation may refine those and add a second
(domain-dependent) layer. Differences, however, are the set
of dialogue states and the distinction made between the
various possible states.

In order to keep the Dialogue Manager truly parametric,
nothing is assumed about the structure of the query except
that it is some sort of slot-and-filler list. In the YPA, the
current Dialogue Manager is customised by defining the
appropriate interfaces in the set-up files.

The YPA is being built in from both ends (front-end and
back-end), and therefore changes to the Dialogue Manager
are expected.

3.2 The parser

If the input is typed, it is not wise either to expect the
user query to be composed of well-formed sentences or on
the other hand to insist that the user must fill in given slots.
The YPA expects arbitrary user input which is parsed by a
relatively flat but robust parser, an adaption of the SNAP
parser [12]. The main task is to detect syntactic infor-
mation, leaving semantic processing to the query con-
struction component. Later in the processing, an
application-specific slot-filling process takes place (com-
parable to the functionality of the pragmatics component in
Agarwal [11]).

The simple example in Fig 2 illustrates the process of
parsing the user input into a slot-and-filler structure.

The set of slots depends on the domain. In this
application, the three slots seem to be sufficient. The default

slot is the goods-slot (which stands for ‘goods and
services’). Phrases whose function is doubtful, e.g.
prepositional phrases like ‘with an emergency service’ or
‘as a birthday present’, will be put into that slot (Fig 3). The
query construction component determines whether this
information is relevant for the query itself or just for the
ranking process that calculates a relevance value for each
retrieved address before the addresses are displayed.

3.3 The query construction component

This component is the most important to the quality of
the results of a user’s query. The structure passed to the
query construction component is a slot-and-filler query. The
task is to match this query to a set of addresses by
consulting different sources of knowledge, namely the
transformed source data (part of the back-end) and
knowledge sources which can be summarised as the world
model. While the back-end supplies indices as well as
ranking values, the shallow world model delivers
information which can be employed on the back-end (e.g.
for query extension). It is therefore the task of the query
construction component to evaluate the various information
sources (e.g. indices versus ranking values) and retrieve a
set of addresses from the back-end if possible. A sample
transformation (again simplified) might look like that
shown in Fig 4.

The constructed query is sent to the address database. If
this results in a set of addresses (up to a maximum number
defined by the administrator in the set-up), then the query
construction is finished. If too many addresses are retrieved,
then the query will be further constrained. For instance,
detected prepositional phrases in the slot-and-filler list
might be added as conjuncts and a new query would be
constructed. A query that resulted in no matching addresses
at all could be relaxed (if possible). This involves exploiting
the world model, e.g. checking for synonyms or cross-
references in the directory heading structure.

Fig 2 Parsing the user input.

Fig 3 Dealing with doubtful phrases.

“I need to get my camera repaired!”

user input:

goods-slot:
transaction-slot:
location-slot:

slot-and-filler list:

camera
repair
<empty>

“I want a camera as a birthday present
for my brother.”

user input:

goods-slot:
transaction-slot:
location-slot:

slot-and-filler list:

camera and pp(...) and pp(...)
<empty>
<empty>

AN INTELLIGENT DIRECTORY ENQUIRY ASSISTANT

BT Technol J Vol 16 No 3 July 1998

149

3.4 The world model

The world model is not a homogeneous component. It
currently has these main parts:

• a large lexicon containing various simple hierarchies
(WordNet [13]),

• the heading structure from the directory (see section
5.1 for the construction process),

• knowledge acquired by the user (updated via the YPA
AdminTool).

3.5 The back-end database

The back-end contains three quite different parts:

• the (relational) database that contains tables extracted
from the source data file, and other relations (e.g.
matching locations to dialling codes),

• a database containing meta data for these indices (such
as ranking values for the appropriate indices, relevant
to the query construction component),

• the language module (e.g. for reduction of words to
base forms) — this will be ignored when looking at the
back-end construction since this part does not have to
be constructed for each set of data.

4. The semi-structured input file

All addresses, headings and various references are
stored in a record structure, where each line is one record.
However, there is no 1:1 relation between records and
entries — address entries, heading entries, etc. More
specifically, most addresses only stretch over one line (so-
called free entries), but some addresses of a different type
(e.g. semi-display entries as shown in Fig 5) will always
consist of more than one line. An interesting part of these
address entries is the free text which is an optional natural
language portion to be printed in the advertisement along
with the address as in the example in Fig 5.

Fig 5 Simple advertisement with free text.

There is no special attribute that marks a record as free
text (for example, in Fig 5 ‘Suppliers Of All’). Thus, the
source data file can be considered as a semi-structured text
because:

• the record structure means that there is no unrestricted
text,

• the record structure is relatively poor, so that while the
extraction of an entry is straightforward, it is not
obvious how to split its address (for instance into
units).

After analysing the given file, the initial task of
exploiting the given structure can be summarised in the
following steps:

• layout analysis, which transforms the input file into a
canonical form (as in phase (1) in the indexing process
of Callan et al [14]),

• address extraction (of any address entry type),

• extraction of headings (of various types, as will be
explained later),

• splitting address entries into smaller units (parts of
addresses),

• conversion into relational schemata.

Performing these steps finally results in a relational
database which is one part of the back-end.

The second back-end creation phase is characterised by
transforming the information from the source data file into
an information retrieval component:

• lexical analysis (removing stop-words, indexing words,
etc, as in phase (2) in Callan et al [14]),

• calculation of ranking tables.

Fig 4 A sample transformation (as illustrated the query contains indices which come in various forms like ID numbers).

slot-and-filler list: slot-and-filler list:

(keyword(camera)^ heading(45367)) v
keyword(repair) v keyword(camera_repair)

goods-slot:
transaction-slot:
location-slot:

camera
repair
<empty>

Before looking at the process of back-end construction,
the structure of the given sources 6 needs to be

examined.

6 The source file used is the Colchester 1997 edition of Yellow Pages.

Kruschwitz Golf & Leisure Wear

Suppliers Of All Top Brand Golf Equipment

100 High Street Colchester 822990

AN INTELLIGENT DIRECTORY ENQUIRY ASSISTANT

BT Technol J Vol 16 No 3 July 1998

150

These two steps are applied to different parts of the
extracted information. The lexical analysis of the headings
entries is not the same as for the company names or parts of
the addresses.

5. The back-end construction

Fig 6 Extraction of the YPA back-end.

The data extraction and transformation takes place in
several steps. It seems more useful to describe the processes
involved according to the different sorts of input
information, rather than the order in which the back-end is
actually created.

It will be seen that the same extraction techniques will
result in significant differences in the results when applied
to different parts of the input.

However, it will be assumed some conditions hold in all
further processing.

Firstly, for part-of-speech tagging the Brill tagger [15,
16] is used without training (using the supplied lexical rule
and contextual rule files of the Wall Street Journal Corpus
and the lexicon of both the Wall Street Journal and Brown
Corpus). This tagger is particularly appropriate as a
contextual tagger is needed, especially one that is robust
enough (see also section 5.2). Furthermore the tagging
follows the Penn Treebank guidelines [17] which makes the
results comparable.

Secondly, WordNet [13] is used for indexing the
keywords. To do this, the WordNet interface that performs
morphological reduction to base forms is used. Then a
stemmer is applied to further reduce the base forms

delivered by WordNet. The result of the stemming does not
have to be a proper lexicon entry (cf Strzalkowski [9]).
However, the synonyms as provided by WordNet can still
be made use of.

Thirdly, the ID for each entry in the data is the unique
line number where this entry starts. Hence, there is
automatically a key for most of the relational tables to be
created.

5.1 Extraction of headings

Extracting the headings from the source data file is
straightforward because one part of the record structure
defines whether a record is a heading. Each heading entry
occupies exactly one record (i.e. line). There are different
types of heading (see below), but the differences do not
affect the extraction and indexing process.

The content of the headings is extremely rich in
information especially because there are very few cases
where a heading consists of more than four words. This is
also the reason why there has to be some preprocessing
before tagging and indexing.

• Changing the word order

Headings are often indexed on the main concept (e.g.
concrete — ready-mixed). These cases can be detected
by pattern matching and can be switched (to ready-
mixed concrete). There are indeed cases where two
swaps have to be performed.

• Replacing abbreviations

The distribution of unknown words in the heading
entries shows that in this case there were 140 unknown
words in 3037 headings using the WordNet lexicon.
Only five of them occur more than three times. Most of
the rest of the words would be accepted by a different
lexicon. The three most frequent unknown words in the
headings are abbreviations that can be replaced before
tagging — mfrs (269 times), eqpt (190 times),
wh’salers (48 times).

Finally there are three general rules for selecting the
indices. An index is created for:

• any single word,

• any compound consisting of two or three consecutive
words,

• noun compounds consisting of more than two words —
such compounds are indexed on any single word in the
compound together with the last one.

All indices are written in a canonical form (see also
section 5.2).

Figure 6 reflects the data flow in the process of
constructing the databases that form the back-end of the

YPA.

Brill tagger

WordNet

stemmer

back-end DBraw YP

AN INTELLIGENT DIRECTORY ENQUIRY ASSISTANT

BT Technol J Vol 16 No 3 July 1998

151

As noted, there are different types of headings. More
specifically there are headings and heading references. The
directories are divided into sections which each list a set of
addresses. The name of such a section is a heading.
Moreover, there are two types of heading references that
can immediately follow such a heading. Firstly, ‘see’
references occur in sections that do not contain addresses at
all but instead only refer to other headings (e.g. heading
fishing agents contains only a reference to shooting and
fishing agents). Secondly, there is a type of heading
reference which is called a ‘see-also’ reference. This type
can be found in sections which do contain addresses but
where a reference might be a useful addition to the heading
(e.g. heading zoos contains a ‘see-also’ reference to tourist
attractions).

Technically, the transformation of a heading reference
(which contains only textual information rather than a link
into other parts of the input file) into a proper relation
between entries has to be performed, but this can easily be
automated. The interesting aspect of processing is deciding
how to evaluate a keyword index that is detected for such
references — how valuable is a keyword that occurs in a
heading which does not contain addresses but a ‘see’
reference, etc? This will be discussed in more detail in
section 5.3.

5.2 Address extraction

This process involves the detection of patterns for parts
of addresses, the selection of free text, as well as the
indexing process and further evaluation of the results.

Extracting parts of addresses

The problem of semi-structured text is that a selected
address does not automatically tell us which portion of it
denotes which ‘concept’. Determining the location of a
business is not straightforward. World knowledge has to be
applied which at least contains all place names in the area;
but this is not enough since the format of the addresses does
not follow a convention.

However, patterns exist that allow the automatic
extraction of all company names and many of the telephone
numbers. (Since the postcode is a quite distinct pattern, it is
extracted as well, but it actually appears in far less than 10%
of all advertisements.) Experiments on the input file have
shown that nearly 100% of addresses contain a pattern that
is recognised as a telephone number. (The exceptions are a
few advertisements that say only ‘See our main ad under ...’
and similar cases.) Most of those patterns can be split into a
dialling code part and the telephone number. Detecting a
telephone number is easier than splitting it into parts, but
more than 90% of the detected lines that contain a telephone
number can be split into proper parts by looking for very
few possible patterns. The dialling code part is either the

dialling code of the area or a place name whose dialling
code can be found from the directory itself — 74 locations
for the Colchester area. Thus for most addresses, the
corresponding dialling code is extracted with minimal
world knowledge.

Determining free text

The first difficulty in indexing the free text of the entries
is to determine the appropriate lines. Some clues are given
by the record structure (e.g. there is an indicator for a line
that contains the company name which tells us that this is
definitely not free text), but there is not much more.

Therefore the first task was finding the best extraction
rules. This was done in a cycle. Each loop in this cycle was
determined by deleting lines from the address corpus
according to some heuristic and then checking the resulting
output by the following criteria:

• deleting too many of the actual free text lines means
not capturing certain addresses when looking for
keywords and worsening the overall keyword ranking
— especially in the source data, many possible
candidates for indexing occur just once in the free text
and might be missed totally,

• deleting too few lines from the address input means
that parts of the addresses which are not free text lines
are considered to be free text — this affects the ranking
of the indices.

The results of each cycle were evaluated by
automatically applying Unix tools together with a lexicon
[13] to the extracted free text. This provided figures for
some of the interesting phases of this extraction process,
namely:

• the number of selected lines,

• the distribution of keywords (as well as compounds),

• the detection of certain typographical patterns,

• the distribution of words unknown to the lexicon.

The heuristics now applied mainly delete lines that
contain telephone patterns or indicators for addresses as
well as company names.

Indexing the selected text

Again a difficult situation arises. On the one hand, the
text lines that are the base for free text indices are finally
available, but on the other hand, this data does not conform
to principles usually assumed in information retrieval or
information extraction. (This is true for both indexing the
free text and the extracted company names, which are

AN INTELLIGENT DIRECTORY ENQUIRY ASSISTANT

BT Technol J Vol 16 No 3 July 1998

152

handled similarly.) The main problems can be summarised
like this:

• there is no sentence structure, just a set of phrases,

• upper/lower case distinctions are often used for lexical
analysis (for example, Callan et al [14] and Brill [16]),
but in the source data file it is irrelevant — usually the
complete address entry is in one case,

• additional tagging errors (e.g. tagging a noun as a verb)
result from the other points.

One solution to the problems is to concentrate on nouns
and compounds. It should be recalled that headings contain
only phrases, mainly noun phrases, that are very compact.
Even adjectives in a heading normally carry important
information. In free text that is not so.

In the free text, all words that were not tagged as either a
noun, a verb, or an adjective are deleted. For the resulting
list of words, an index is written for:

• any single word tagged as a noun,

• any compound consisting of two or three consecutive
words,

• noun compounds consisting of more than two words
are indexed on any single word in the compound
together with the last one (based on the assumption that
usually modifiers modify the last item, though this is
not always true).

Indexing keyword phrases of more than two words is
common in information retrieval tasks (e.g. Strzalkowski
[9]). But since the dialogue with the YPA is a conversation,
relatively short and uncomplicated phrases can be assumed.
Initially, it was thought it would make little sense to use
three-word indices in this context, as a longer compound
can still be reduced to the selection of parts of it. It was soon
realized, however, that compounds like ‘equipment repair’
and ‘horticultural nurseries’ could relate to far too many
addresses and therefore compound indices of up to length
three are now constructed.

The indexing table is reduced to less than half its size by
deleting all compound indices that are detected only once in
the corpus. This makes the number of compound indices
relatively small. The reason for deleting only those single
occurrences is that a relatively small-scale ‘corpus’ is being
used. By contrast, the INQUERY system eliminates
concepts that occur less than 16 or more than 3000 times
[18]. In the context of Yellow Pages, the source data, every
single word (especially in the headings) may be significant.

The indices are written in a canonical form (i.e.
alphabetical order). Any attempt to extract the head and
modifier of a compound was abandoned, since the overall
increase in recall, even for a purely alphabetically ordered

index, is relatively small. Also Strzalkowski et al [10] report
for their IR system dealing with much larger corpora:

‘This head+modifier normalisation has been used in
our system... At the same time, while the gain in recall
and precision has not been negligible, no dramatic
breakthrough has occurred either’.

5.3 Definition of ranking values

The calculation of weights to be attached to the indices
is very much project-specific.

A standard IR scheme for the assignment of weights to
indices is the ‘term frequency—inverse document
frequency’ formula (tf.idf):

tfidfik = #(term i in document k)

which assigns term i in document k the value tfidfik.

On the one hand, the indices are available and
distribution, etc, can be calculated. On the other hand, it is
not possible to apply a formula like tf.idf in order to get a
value for each keyword reflecting its importance, since
these documents are single entries, and normally each index
occurs at most once in the address. Even if there are ten
lines of free text this is still a very small document and
moreover, ten lines of free text would be unusually long.

Different indices have different effects on the overall
ranking. The importance of an index — its overall ranking
value — is determined by the number of addresses that
would be retrieved only using this index as the access key.
Moreover, this relation can be applied to smaller domains,
on the keywords in the headings, in the free text of
addresses, and in the company names.

The two types of heading references that exist represent
a special case. A keyword index in a heading which
contains a ‘see’ reference instead of addresses will have the
same ranking as it would have if all the addresses under the
referenced headings were stored under the heading that
contains the reference. The heading ‘yoga’ contains ‘see’
references to ‘health clubs and fitness centres’ and ‘sports
clubs and associations’, but lists no addresses. If this
principle were not applied, the word yoga would not have a
ranking value as a keyword index.

‘See-also’ references are currently ignored for the
calculation of ranking values. The reasons for that are:

• ‘see-also’ references are usually much more general
than the heading under which they occur,

• when a ‘see-also’ reference turns up, it usually makes
reference to many headings.

∗ #(documents)
documents with term i()
--- -

 log

AN INTELLIGENT DIRECTORY ENQUIRY ASSISTANT

BT Technol J Vol 16 No 3 July 1998

153

However, even though these reference types do not
influence the ranking values, they are exploited in the
dialogue (e.g. if no addresses can be retrieved otherwise).

6. Recent experiences and integration

• heading indices are most important,

• indices in free text and in names get a lower initial
value,

• indices that exist for knowledge retrieved from the
world model are least significant, e.g. assume a user
query: ‘I need my hedges trimmed,’ an address
selected because it contained the keyword hedgerow as
a synonym for hedge is assumed not to be as significant
as an address that has an index on hedge,

• all indices are weighted by their frequency in the
complete database.

The weights for each index type are defined
heuristically and will have to be re-investigated during
evaluation. However, because there is a separate address
ranking component, other aspects can be added to the
ranking function. It is possible to give semi-display
advertisements a higher initial weight than free entries,
because they are more expensive. Other factors might
influence the address ranking, e.g. if it is undesirable to bias
towards longer entries, the ranking function will weight
each index by the length of the entry.

Further recent developments have involved the
extraction of more address information from the data. As
previously mentioned, the dialling code (i.e. the location)
could be extracted easily. Now the rest of the entry
(everything excluding name, free text, postcode, telephone
pattern) can be split into street name, house number and rest
of address, without having to apply additional knowledge.
This information is useful in a query such as:

‘Which restaurants are there in Colchester High
Street?’

This additional information will be used only if there are
otherwise too many addresses, and if the location slot had
been filled already. It would not make much sense to
display addresses for restaurants in High Street if it was not
known that this is in Colchester. In any case, this

information is used in the calculation of the address
relevance.

 The off-line processing of the indices, rankings, etc, can
be performed by Unix tools (mainly Gawk), some C-
programs together with the necessary libraries for the
lexicon and the tagger scripts.

A new edition of the classified directory or directory for
a different area can be handled automatically.

Figure 7 shows a simple query in the on-line dialogue
with the YPA.

Fig 7 Screenshot of an on-line dialogue.

The current version YPA0.5 runs on a SPARC station 5-
175 with selected domains as well as with the complete
Colchester Yellow Pages (about 26 000 address entries). It
is a Sicstus Prolog Executable controlled by a Tcl-Tk
graphical user interface. As an alternative, a Web interface
was also developed which is realised by a set of Perl scripts
and accesses the YPA via socket connections.

The experimental speech recognition software which
can optionally be used is constructed with the Nuance
speech recognition tool-kit of Nuance Communications.
Speech recognition is not a focus of this project, but it has
been shown that the integration of speech input is possible.

7. Future work

Experiences to date with the prototype of the YPA are
encouraging. For this project, it seems to be the only

way to combine IR techniques with reasonable NLP.
Relying entirely on IR would miss out too much relevant
information, while a more powerful NLP approach would
be inappropriate in a domain where both the data and the
queries are so stylised.

This paper has discussed how the data from the source
file can be transformed into a database. This database

forms the backbone of the YPA. There is a sub-module of
the query construction component, the address ranking
component, which takes the initial query and the list of
retrieved addresses as input and orders them according to
relevance by giving each address a percentage of relevance
for the given query. The ranking function implemented in
the current system calculates an accumulative relevance
value based on the following assumptions:

AN INTELLIGENT DIRECTORY ENQUIRY ASSISTANT

BT Technol J Vol 16 No 3 July 1998

154

Naturally a system with these goals must be evaluated.
The system is not in its final form, with an extended query
corpus being considered. The evaluation will start with the
selected domains from the Colchester Yellow Pages, and
the results will be published shortly.

It is also intended to challenge the current assumptions
by testing how well the system extends to new examples of
the domain — other areas and new editions of the directory.

The back-end is expected to show itself to be stable, but
the key interest is in finding how the Dialogue Manager and
the query construction component will need to be modified.

Another part of the future work will be the improvement
of the YPA AdminTool, a tool (not described here) for the
administrator not the user of the YPA. Encountering
unknown terms may cause the Dialogue Manager to enter a
simple clarification dialogue with the user. Knowledge so
acquired is logged for the administrator who may choose to
add it to the (world) knowledge base by using the YPA
AdminTool.

Acknowledgements

References

1 Aust H, Oerder M, Seide F and Steinbiss V: ‘The Philips automatic
train timetable information system’, Speech Communication, 17, pp
249—262 (1995).

2 Wahlster W: ‘Verbmobil: translation of face-to-face dialogues’,
Proceedings of the 3rd European Conference on Speech
Communication and Technology, pp 29—38, Berlin, Germany (1993).

3 Sikorski T and Allen J F: ‘A task-based evaluation of the TRAINS-95
dialogue system’, Proceedings of the Workshop on Dialog Processing
in Spoken Language Systems, ECAI-96, Budapest (1996).

4 McGlashan S, Fraser N, Gilbert N, Bilange E, Heisterkamp P and Youd
N: ‘Dialogue management for telephone information systems’,
Proceedings of the International Conference on Applied Language
Processing, Trento, Italy (1992).

5 Heisterkamp P, McGlashan S and Youd N: ‘Dialogue semantics for an
oral dialogue system’, Proceedings of the International Conference of
Spoken Language Processing, Banff, Canada (1992).

6 Zue V, Glass J, Goodine D, Leung H, Phillips M, Polifroni J and Seneff
S: ‘The VOYAGER speech understanding system: preliminary
development and evaluation’, Proceedings of IEEE International
Conference on Acoustics, Speech and Signal Processing (1990).

7 Zue V: ‘Toward systems that understand spoken language’, IEEE
Expert Magazine, pp 51—59 (February 1994).

8 Glass J, Flammia G, Goodine D, Phillips M, Polifroni J, Sakai S,
Seneff S and Zue V: ‘Multilingual spoken-language understanding in
the MIT VOYAGER system’, Speech Communication, 17, pp 1—18
(1995).

9 Strzalkowski T: ‘Natural language information retrieval: TREC-4
report’, Proceedings of the Fourth Text Retrieval Conference (TREC-
4), NIST Special Publication 500-236 (1996).

10 Strzalkowski T, Guthrie L, Karlgren J, Leistensnider J, Lin F, Perez-
Carballo J, Straszheim T, Wang J and Wilding J: ‘Natural language
information retrieval: TREC-5 report’, Proceedings of the Fifth Text
Retrieval Conference (TREC-5), NIST Special Publication 500-238
(1997).

11 Agarwal R: ‘Towards a PURE spoken dialogue system for information
access’, Proceedings of the ACL/EACL Workshop on ‘Interactive
spoken dialog systems: bringing speech and NLP together in real
applications’, pp 90—97, Madrid (1997).

12 Carson J A and De Roeck A: ‘The SNAP system: a natural language
frontend to text and data bases’, Proceedings of the Natural Language
Processing and Industrial Applications Conference (NLP-IA),
Moncton, Canada (1996).

13 WordNet (Five papers on WordNet): ftp://clarity.princeton.edu/pub/
wordnet/5papers.ps.

14 Callan J P, Croft W B and Broglio J: ‘TREC and TIPSTER
experiments with INQUERY’, Information Processing and
Management, 31, No 3, pp 327—343 (1995).

15 Brill E: ‘A simple rule-based part of speech tagger’, Proceedings of the
Third Conference on Applied Natural Language Processing, ACL,
Trento, Italy (1992).

16 Brill E: ‘Some advances in rule-based part of speech tagging’,
Proceedings of the Twelfth National Conference on Artificial
Intelligence (AAAI-94), Seattle, Washington (1994).

17 Santorini B: ‘Part-of-speech tagging guidelines for the Penn Treebank
Project’, Technical report MS-CIS-90-47, Department of Computer
and Information Science, University of Pennsylvania (1990).

18 Allan J, Ballesteros L, Callan J P, Croft W B and Lu Z: ‘Recent
experiments with INQUERY’, Proceedings of the Fourth Text
Retrieval Conference (TREC-4), pp 49—63, NIST Special Publication
500-236 (1996).

This work has been funded by a contract from the ISR
group at BT Laboratories, Martlesham Heath. The

authors want to thank the reviewers as well as K C Tsui,
Wayne Wobcke and Nader Azarmi for their helpful
comments on this paper.

Anne De Roeck is a senior lecturer and the
head of the Department of Computer Science
at Essex University.

She has an MSc in artificial intelligence, and
has worked in many branches of natural
language, both conventional and com-
putational.

AN INTELLIGENT DIRECTORY ENQUIRY ASSISTANT

BT Technol J Vol 16 No 3 July 1998

155

Philip Neal has studied both actual and computational linguistics and holds
a PhD in Middle High German as well as an MSc.

He has worked on computational linguistics applied to document capture at
UMIST.

Udo Kruschwitz has a degree in computer
science from the Humboldt University in
Germany.

He also studied artificial intelligence in
Edinburgh, and worked on the ‘VERBmobil’
natural lanaguage processing project in
Berlin.

Paul Scott is a senior lecturer in the
department of Computer Science at Essex
University.

He holds a DPhil from Sussex in psychology,
and has worked in several areas of artificial
intelligence, especially machine learning.

Sam Steel is a senior lecturer in the
department of Computer Science at Essex
University.

He holds a PhD from Edinburgh in artificial
intelligence, and is interested in modelling
rational behaviour and in natural language as
action.

Ray Turner is a professor in the department of
Computer Science at Essex University.

He holds PhDs in both mathematics and
philosophy, and is interested in the relation of
logic to mathematics, computation and
language.

Nick Webb studied Computer Science at
Essex University, from where he has a BSc
and an MSc.

He has also worked on the SNAP natural
language processing project at Essex
University.

