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I. INTRODUCTION
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Typed Predicate Logic

• Typed Predicate Logic was developed as a 
framework for the articulation and study of 
the rich variety of logical systems.

• It has its roots in the various logics that 
involve some notion of sort or type.

• A superficial observation has it that it is a 
generalisation of many sorted logic. While so, 
it is a sophisticated one in which the sorts 
themselves form mathematical theories.
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Background

• Simple and Ramified type theories 
• Intensional simple type theory
• Intensional ramified type theories
• Logics of Propositions, Properties and Truth
• Constructive type theories 
• Theories of Operations and Types 
• Second Order Lambda Calculus and the 

Theory of Constructions 
• Combinatorial Logic
• ....
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Theories

• TPL a system of logic in which the notion of 
type theory plays a parallel role to that of a 
first-order theory in first-order logic.

• In FOL, theories introduce new constants, 
relation and functions that are governed by a 
collection of rules and axioms.

• In TPL, theories introduce new constants, 
relation, function and types that are governed 
by a collection of rules and axioms.
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Areas of Application

1) Non Standard Logics: The Representation and 
study of logics

2) Logics of Computation: Hoare logic, Dynamic 
Logic, Domain logic, Process algebra,...

3) The Ontologies of Mathematics: towards a 
descriptive metaphysics of mathematics.

4) Formal Ontology: sortal logics, mereology, 
events and time, process logic etc. 

5) Natural Language Semantics: Montague 
grammar, Situation theory, Property theories, 
Discourse Representation Theory etc.
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II. LOCAL FORMALISATION
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Local Formalisation

• In this area, I see the logician’s function as the 
articulation and study of the variety of logical 
systems and structures thrown up by 
mathematical practice.

• Each branch of mathematics makes different 
ontological assumptions.

• Typed Predicate Logic allows a mix and match 
policy – choose your type constructors and glue 
them together.

• But when is a formalisation of a branch of 
mathematics judged to be a good one?
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Adequate Formalisation

• A theory T is an adequate formalization of a body 
M of informal mathematics if every concept, 
argument, and result of M can be represented by 
a (basic or defined) concept, proof, and theorem, 
respectively, of T. 

• We might wish to place limits on the complexity 
and levels of definitions allowed to preserve a 
close connection between subject and theory. We 
distinguish between direct and indirect adequacy
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Faithful Formalisation

• T is faithful to M if every basic concept of T 
corresponds to a basic concept of M, and every 
axiom and rule of T corresponds to or is implicit in 
the assumptions and reasoning followed in M. 

• T is faithful to M if T does not go beyond M 
conceptually or in principle. 
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Number Theory

• Let M be the body of number theory one finds in 

books on elementary number theory. Then PA with 

function symbols for all primitive recursive functions is 

adequate – it is also faithful even though most 
induction in M is restricted.

• PA with just + and x is indirectly adequate.

• Set theoretic reduction: any representation of 

numbers gives them extraneous properties: 3 4. Not 

faithful. 
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Classical Analysis

• Let M be classical analysis

• ZF is adequate but not faithful. 

• Weaker systems are adequate.

• Z2 (= arithmetic + set variables plus full 

comprehension) is adequate.

• But only indirectly adequate since one has to code. 

• Finite type theory is directly adequate but arguably 

goes beyond practice. It might be implicit in the 

informal theory.
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Hereditarily Finite Sets

• Let M be the theory of hereditarily 
finite sets: finite sets all the way down.

• PA is indirectly adequate.

• However, the representation is not 
meaning preserving: finite sets must 
be coded as numbers.

• Better to take HFS as primitive. 

14



Ontological Poverty

• Lack of adequacy and faithfulness are 
often the result of ontological poverty.

• Standard type theories have fixed type 
constructors.

• Is the notion of function as set of ordered 
pairs meaning preserving? 

• Should the notion of function be taken as 
primitive?

• It is hard to be faithful, but we should try.
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III. TYPED PREDICATE LOGIC

16



Types and Grammar

• There is a need for a flexible theory of syntax 
that extends the traditional approach via 
context free grammar.

• In TPL, grammar rules and logical ones are 
intertwined.

• This gives the flexibility for the formulation of 
a rich variety of theories without standard 
context free syntax getting in the way.

17



Judgements of TPL

T type

t:T

ʊprop

ʊ(true)
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Contexts and Sequents

1. c =xѕ:Tѕ,...,xn:Tn ....type contexts

2. Ґ ȄѕΥ¢ѕΣΦΦΦΦΦΣȄn:Tn ,ѕ,...,m ....for general ones

3. ͵   Sequents
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Relations, Functions and Types
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Grammar Rules

Syntax given by rules.  This permits the expression of systems that 
involves rich type systems that include  dependency and self application. 

1. Propositions closed under the standard connectives

͵  prop         ͵  prop
----------------------------------------------------

͵  prop

3. And closed under typed Quantifiers 

, x:T͵ prop                        , x:T͵ prop 
------------------------------- --------------------------------------

͵  x:Tprop                     ͵  x:T prop

• Note the dependency of the judgement
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Logical Rules

͵   ͵   ͵   ͵  prop
-----------------------------------------------------------------------

͵   ͵  

, ͵  ͵  ͵  

---------------------- ----------------------------------------

͵  ͵ 
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QUANTIFIERS

, x:T͵ 

----------------------------

͵ x:T

͵  x:T ͵  t:T

---------------------------------------------------------

͵  [t/x]
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Equality

 a͵ :T ͵  b:T              ͵  a=Tb        ͵  [a] ,x:T ͵prop

------------------------------------------------------------------------------------------------------------

͵  a=Tbprop                                                ͵  [b]

 a͵ :T

--------------------------

͵ a =T a
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Coherence

Theorem: If ͵   then ͵  prop

Proof By induction on the derivations: rule by rule argument.

• Compare with the older Curry systems of logical 
anarchy.
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Grammar Independence

Definition
A system is Grammar Independent if
1. ͵   prop then c͵ prop
2. ͵  T  type then c͵ T type
3. ͵  t:T then c͵ t:T

i.e., type conclusions only depend upon type contexts.

The full logical system is not decidable.
Question: When is a system a conservative extension of a 

grammar independent system?
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IV. TYPE THEORIES
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Numbers
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Cartesian Products

T type        S type                 t:T s:S

------------------------------------------------------------------

TS   type                        (t, s):T S

t:T S                             t:T s:S
-------------- -------------------------

lt:T                                    l(t, s)=t
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The Typed Lambda Calculus

S  type            T type
--------------------------------------

TS type

x:T ͵t:S f:TS      t:T
-------------------- -----------------------------

x:T.t : TS                          ft:S

x:T ͵t:S s:T
------------------------------------

(x:T.t)s=t[s/x]
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Functional Type Theory (FTT)

Th(N,,)

• Basic types: Numbers

• Constructors: Products, Arrow

Theorem FTT is a grammar independent theory
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Constructible Sets
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Simple Type Theory 

• STT=Th(N,, Set)

• Basic types: Numbers

• Constructors: Products, Sets

Theorem STT is a grammar independent theory
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Higher Order Logic*

• HOL*=Th(N,, Bool,)

• Basic types: Numbers, Bool

• Constructors: Products, Functions

Theorem HOL* is a grammar independent theory
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Constructive Type Theory

T type      S type           a:T b:T
--------------------------------------------------------

TS type                  I[T,a,b] type    

x:TṺS  type                 x:TṺS  type
-------------------------------------------------------

x:TS   type                  x:TS   type
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The Type of ZF Sets
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Geometry
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Mix and Match

• Chose your type constructors and their rules 
to construct the required theory.

• Different branches of mathematics have 
different primitives and different type 
constructors
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V. DEFINITIONS
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Definitions

Definitions introduce new

1. Relations

2. Operations

3. Objects

4. Types

We develop an approach to definitions that 
applies to any theory in TPL.
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Definitions

Within TPL such definitions take the following 
form. 

Assume

x1:T1,.....,xn:Tn ͵ φ[x₁,...,xn] prop

Then we may (conservatively) introduce a new 
relation symbol via:

R ̗ [x1:T1,...,xn:Tn  . φ[x₁,...,xn]]

41



Axiom

• This is governed by 

x1:T1,...,xn:Tn  .R(x1,...,xn)φ[x₁,...,xn]

• The addition of such a relation results in a 
new theory TPLR.

• Applies to any theory of types. 
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Notation

R ̗ [x1:T1,...,xn:Tn . φ[x₁,...,xn]]

often written as

R

x1:T1,...,xn:Tn

φ[x₁,...,xn]
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Functions and Definite Descriptions

1. If   x:T.!y:S.φ[x,y]

Then we may conservatively introduce a new 
function symbol that satisfies

x:T.y:S. F(x)=y φ[x,y]

2. If    !x:T.[x]

Then we may introduce an object symbol

x. [x]

Such that [x. [x]]x:T. [x](x= x. [x])
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Maps (Conservative)

S  type            T type

--------------------------------------

Map(T, S) type

x:T ͵f(x):S f: Map(T, S)    t:T
---------------------- --------------------------------

f: Map(T, S)                              f(t):S

May include 

x:A ͵f(x):B in declarations
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Group Theory

• Let T be a type in GTh=Th(N,, )

G ̗ [z: TT T. φ[z]]

Where φ[z] are the axioms of group theory.

The notion of group depends upon the type.
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Groups in Set Theory
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Circles in Geometry
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Topological Space in a Theory with 
Sets

Topological Space

F: Set(Set(U))

F

UF

GFG F

f, g Ffg F
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Admissible Specifications

In the classical theory of definitions, there are 
coherence/consistency constraints.

Conservative: By defining new things, one cannot 
deduce anything new about old ones.

Eliminability: Anything said about new things can be 
reduced to something said about old ones
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Grammatical Extension

Most of the notions of FOL have to be newly 
defined for TPL.  

Let T1 and T2 be two theories. T2 is a 
Grammatical Extension of  T1 iff

I. If T1͵ ˒ prop then T2͵ ˒ prop

II. If T1͵ T type then T2͵ T type

III. If T1͵ t :T type then T2͵ t:T 
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Conservative Extension

Has to be redefined for TPL.  

Let T2 be a grammatical extension of T1. It is a 
Conservative Extension iff

If T1͵ ˒ prop then 

T2͵˒ implies T1͵˒
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Elimination

Let T2 be a grammatical extension of T1 . It is a 
Elimination Extension iff

If T2͵ ˒ prop then for some ˕

we have

T1͵˕prop and T2͵ ˒˕
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Translations

These, and other more complex relationships 
between theories, are often established by the 
construction of a translation

*:T1 T2 

* is Sound iff 

I. If T1͵ ˒ prop then T2͵ ˒* prop

II. If T1͵ T type then T2͵ T* type

III. If T1͵ t :T type then T2͵ t*:T*

IV. If T1͵˒ then T2͵ *˒
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VI. MODELS
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Set Theoretic Models

• Types are modelled as sets.

• Relations and functions are set theoretic 
relations and functions over those sets.

• Soundness and Completeness - standard 
arguments for general case.

• But many technical complications.

• Still unhappy: treatment inelegant.
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Category Theoretic Models

• Use the type-category relationship.

• E.g. Typed Lambda calculus and Cartesian 
closed categories

• Each type theory requires a different theory of 
categories.

• Dependent type theories require local 
theories
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Recursive Models

• Terms modelled as numbers 
• Equality to be decidable
• The sigma relations, operations and types are modelled 

as codes of RE sets/relations
• Some of our theories have a recursive model. 
• Proof theoretically very weak.
• For complexity reasons one might wish to design 

theories that are interpretable inside primitive 
recursive or even polynomial arithmetic. One then has 
to pay attention to induction principles. 

• Proofs are hard ; lots of techniques required. See 
Feferman 95 and Turner  96.
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VII. SUBTYPES
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Why Subtypes

• Expressive power

• Enables logical information to be incorporated 
into type stipulation

• Allows more fine grained types and so more 
total functions.
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Subtypes
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Function Types

Given sets and subtypes we can define a type 
of functions in the classical way as single 
valued relations.
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The Addition of Subtypes is 
Conservative (very often)

Each type proposition and T is translated    (Via *) 
Types break into 2 parts

i. A type T

ii. A predicate  T over T

Such that

Theorem: If ͵  t:T   then * ͵ t*:T and 

* ͵ T(t*)

We shall see applications shortly.

63



VIII.ABSTRACT TYPES
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Dependent Products
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Relations as Types

In the presence of subtypes and abstract types 
these two notions are interchangeable.
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Textbook Definition

A group is a pair of objects: a set, G, together 
with an operation that combines any two 
elements a and b to form another element, 
denoted 

a • b. 

To qualify as a group, the set and operation, 
(G, •), must satisfy four requirements known 
as the group axioms.
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Groups as Types

The elements of the type of groups are pairs consisting of a 
group and an operation on it which together satisfy the 
group axioms. This is a more direct formalisation of the 
informal notion. It requires subtypes and dependent 
product types.
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IX. POLYMORPHISM IN 

MATHEMATICS
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Explicit Polymorphism in TPL

For each theory Th, add a universal type U which is 
closed under the type constructors of the theory e.g.

Plus       U type 

In some cases e.g. where there are RE models

U: U
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Categories

• A category C consists of the following three 
mathematical entities:

• ob(C), whose elements are called objects;

• hom(C), whose elements are called arrows. Each arrow 
f has a unique source object a and target object b. We 
write f: a → b, and we say "f is a morphism from a to 
b". We write hom(a, b) (or Hom(a, b), or homC(a, b), or 
Mor(a, b), or C(a, b)) to denote the hom-class of all 
morphisms from a to b.

• A binary operation, called composition of arrows, such 
that .....
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A Theory for Categories

Our objective is to formulate the 
background type theory for Category theory

CAT=Th(U, ∑, Map) + Subtypes
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Categories

The arrows and objects are types rather than sets. 
The type theory is a minimal theory for the 
constructions of basic category theory. 

73



Functors
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X. GENERALISED 

COMPUTABILITY
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Church-Turing

• Applies to numbers but there have been many 
attempts to generalise to more general 
mathematical systems. 

• For numbers, Turing computable relations are 
characterised as those relations definable by 
disjunction, conjunction, existential 
quantification and bounded quantification –
the propositions
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Sigma Propositions

• φ is iff it is constructed from atomic 
propositions via , and .

• φ is iff φ is and ¬φ is provable 
equivalent to a proposition

• Applies to any theory of types but in some 
theories there maybe additional logical 
connectives and quantifiers.

• Completeness requires self reference and 
diagonalisation.
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Generalised Computability

• This provides a generalised computability theory 
that extends Church-Turing computability to 
arbitrary type theories cast within TPL.

• Justification is that the notions of and in 
Peano arithmetic are logical characterisations of 
CT computability and in arbitrary type theory 
these notions get mapped to their arithmetic 
cousins.

Research topic: extend the work in recursion theory 
to arbitrary type theories. Explore the issue of 

Turing completeness. Here is a start
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Recursive and RE Relations

Definition

R  ̗ [x1:T1,...,xn:Tn  . φ[x₁,...,xn]]

is Recursively Enumerable iff φ is . R  
is Recursive if φ is .
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XI. RECURSIVE DEFINITIONS
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The Form of Recursive Definitions
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Recursion operator taken from Gödel's 
Functionals of finite type
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Which Theories Support Recursion?

• PA

• Typed Finite Set Theory

• May take them as primitive

• With a universe we can have recursive type 
definitions.
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XII. OTHER  APPLICATIONS
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Areas of Application

1) Non Standard Logics

2) Logics of Computation: Hoare logic, Dynamic 
Logic, Domain logic, Process algebra,...

3) Formal Ontology: sortal logics, mereology, 
events and time, process logic etc. 

4) Semantics: ask Chris.
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Logics of Computation

• See CSEE slides on my web page
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Application to Formal Ontology

Exercise: Develop Type theories with types such as
Events
Individuals, properties and relations
Time
Mereology
Collections
.
.

Exercise. 
Formalise a standard formal ontology such as that of 
Smith or Zalta. PhD topics.
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Application to Semantics

Ontology required for semantics theory

Propositions, events, properties,...

Descriptive Semantics; see Fox and Turner 
forthcoming
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How to develop highly Intensional
logics: Inner and Outer Logics

Prop type

prop                            : Prop 
--------------- -----------------
: Prop                         prop

prop                            prop 
--------------- -----------------
T[] prop                          T[]
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Modal Logics

prop                              prop 
--------------- -----------------

[] prop                          []
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