
TYPED PREDICATE LOGIC

Describing Mathematics in Typed
Predicate Logic

1

OUTLINE

I. Introduction
II. Local Formalisation
III. Typed Predicate Logic
IV. Type Theories
V. Definitions
VI. Models
VII. Subtypes
VIII. Abstract types
IX. Polymorphism in Mathematics
X. Generalised Computability
XI. Recursive Definitions
XII. Other Applications

2

I. INTRODUCTION

3

Typed Predicate Logic

• Typed Predicate Logic was developed as a
framework for the articulation and study of
the rich variety of logical systems.

• It has its roots in the various logics that
involve some notion of sort or type.

• A superficial observation has it that it is a
generalisation of many sorted logic. While so,
it is a sophisticated one in which the sorts
themselves form mathematical theories.

4

Background

• Simple and Ramified type theories
• Intensional simple type theory
• Intensional ramified type theories
• Logics of Propositions, Properties and Truth
• Constructive type theories
• Theories of Operations and Types
• Second Order Lambda Calculus and the

Theory of Constructions
• Combinatorial Logic
•

5

Theories

• TPL a system of logic in which the notion of
type theory plays a parallel role to that of a
first-order theory in first-order logic.

• In FOL, theories introduce new constants,
relation and functions that are governed by a
collection of rules and axioms.

• In TPL, theories introduce new constants,
relation, function and types that are governed
by a collection of rules and axioms.

6

Areas of Application

1) Non Standard Logics: The Representation and
study of logics

2) Logics of Computation: Hoare logic, Dynamic
Logic, Domain logic, Process algebra,...

3) The Ontologies of Mathematics: towards a
descriptive metaphysics of mathematics.

4) Formal Ontology: sortal logics, mereology,
events and time, process logic etc.

5) Natural Language Semantics: Montague
grammar, Situation theory, Property theories,
Discourse Representation Theory etc.

7

II. LOCAL FORMALISATION

8

Local Formalisation

• In this area, I see the logician’s function as the
articulation and study of the variety of logical
systems and structures thrown up by
mathematical practice.

• Each branch of mathematics makes different
ontological assumptions.

• Typed Predicate Logic allows a mix and match
policy – choose your type constructors and glue
them together.

• But when is a formalisation of a branch of
mathematics judged to be a good one?

9

Adequate Formalisation

• A theory T is an adequate formalization of a body
M of informal mathematics if every concept,
argument, and result of M can be represented by
a (basic or defined) concept, proof, and theorem,
respectively, of T.

• We might wish to place limits on the complexity
and levels of definitions allowed to preserve a
close connection between subject and theory. We
distinguish between direct and indirect adequacy

10

Faithful Formalisation

• T is faithful to M if every basic concept of T
corresponds to a basic concept of M, and every
axiom and rule of T corresponds to or is implicit in
the assumptions and reasoning followed in M.

• T is faithful to M if T does not go beyond M
conceptually or in principle.

11

Number Theory

• Let M be the body of number theory one finds in

books on elementary number theory. Then PA with

function symbols for all primitive recursive functions is

adequate – it is also faithful even though most
induction in M is restricted.

• PA with just + and x is indirectly adequate.

• Set theoretic reduction: any representation of

numbers gives them extraneous properties: 3 4. Not

faithful.

12

Classical Analysis

• Let M be classical analysis

• ZF is adequate but not faithful.

• Weaker systems are adequate.

• Z2 (= arithmetic + set variables plus full

comprehension) is adequate.

• But only indirectly adequate since one has to code.

• Finite type theory is directly adequate but arguably

goes beyond practice. It might be implicit in the

informal theory.

13

Hereditarily Finite Sets

• Let M be the theory of hereditarily
finite sets: finite sets all the way down.

• PA is indirectly adequate.

• However, the representation is not
meaning preserving: finite sets must
be coded as numbers.

• Better to take HFS as primitive.

14

Ontological Poverty

• Lack of adequacy and faithfulness are
often the result of ontological poverty.

• Standard type theories have fixed type
constructors.

• Is the notion of function as set of ordered
pairs meaning preserving?

• Should the notion of function be taken as
primitive?

• It is hard to be faithful, but we should try.
15

III. TYPED PREDICATE LOGIC

16

Types and Grammar

• There is a need for a flexible theory of syntax
that extends the traditional approach via
context free grammar.

• In TPL, grammar rules and logical ones are
intertwined.

• This gives the flexibility for the formulation of
a rich variety of theories without standard
context free syntax getting in the way.

17

Judgements of TPL

T type

t:T

ʊprop

ʊ(true)

18

Contexts and Sequents

1. c =xѕ:Tѕ,...,xn:Tntype contexts

2. Ґ ȄѕΥ¢ѕΣΦΦΦΦΦΣȄn:Tn ,ѕ,...,mfor general ones

3. ͵  Sequents

19

Relations, Functions and Types

20

Grammar Rules

Syntax given by rules. This permits the expression of systems that
involves rich type systems that include dependency and self application.

1. Propositions closed under the standard connectives

͵ prop ͵ prop
--

͵ prop

3. And closed under typed Quantifiers

, x:T͵ prop , x:T͵ prop
------------------------------- --------------------------------------

͵ x:Tprop ͵ x:T prop

• Note the dependency of the judgement

21

Logical Rules

͵  ͵  ͵  ͵ prop

͵  ͵ 

, ͵  ͵  ͵ 

---------------------- --

͵  ͵ 

22

QUANTIFIERS

, x:T͵ 

͵ x:T

͵ x:T ͵ t:T

͵ [t/x]

23

Equality

 a͵ :T ͵ b:T ͵ a=Tb ͵ [a] ,x:T ͵prop

--

͵ a=Tbprop ͵ [b]

 a͵ :T

͵ a =T a

24

Coherence

Theorem: If ͵  then ͵ prop

Proof By induction on the derivations: rule by rule argument.

• Compare with the older Curry systems of logical
anarchy.

25

Grammar Independence

Definition
A system is Grammar Independent if
1. ͵  prop then c͵ prop
2. ͵ T type then c͵ T type
3. ͵ t:T then c͵ t:T

i.e., type conclusions only depend upon type contexts.

The full logical system is not decidable.
Question: When is a system a conservative extension of a

grammar independent system?

26

IV. TYPE THEORIES

27

Numbers

28

Cartesian Products

T type S type t:T s:S

--

TS type (t, s):T S

t:T S t:T s:S
-------------- -------------------------

lt:T l(t, s)=t

29

The Typed Lambda Calculus

S type T type

TS type

x:T ͵t:S f:TS t:T
-------------------- -----------------------------

x:T.t : TS ft:S

x:T ͵t:S s:T

(x:T.t)s=t[s/x]

30

Functional Type Theory (FTT)

Th(N,,)

• Basic types: Numbers

• Constructors: Products, Arrow

Theorem FTT is a grammar independent theory

31

Constructible Sets

32

Simple Type Theory

• STT=Th(N,, Set)

• Basic types: Numbers

• Constructors: Products, Sets

Theorem STT is a grammar independent theory

33

Higher Order Logic*

• HOL*=Th(N,, Bool,)

• Basic types: Numbers, Bool

• Constructors: Products, Functions

Theorem HOL* is a grammar independent theory

34

Constructive Type Theory

T type S type a:T b:T
--

TS type I[T,a,b] type

x:TṺS type x:TṺS type

x:TS type x:TS type

35

The Type of ZF Sets

36

Geometry

37

Mix and Match

• Chose your type constructors and their rules
to construct the required theory.

• Different branches of mathematics have
different primitives and different type
constructors

38

V. DEFINITIONS

39

Definitions

Definitions introduce new

1. Relations

2. Operations

3. Objects

4. Types

We develop an approach to definitions that
applies to any theory in TPL.

40

Definitions

Within TPL such definitions take the following
form.

Assume

x1:T1,.....,xn:Tn ͵ φ[x₁,...,xn] prop

Then we may (conservatively) introduce a new
relation symbol via:

R ̗ [x1:T1,...,xn:Tn . φ[x₁,...,xn]]

41

Axiom

• This is governed by

x1:T1,...,xn:Tn .R(x1,...,xn)φ[x₁,...,xn]

• The addition of such a relation results in a
new theory TPLR.

• Applies to any theory of types.

42

Notation

R ̗ [x1:T1,...,xn:Tn . φ[x₁,...,xn]]

often written as

R

x1:T1,...,xn:Tn

φ[x₁,...,xn]

43

Functions and Definite Descriptions

1. If x:T.!y:S.φ[x,y]

Then we may conservatively introduce a new
function symbol that satisfies

x:T.y:S. F(x)=y φ[x,y]

2. If !x:T.[x]

Then we may introduce an object symbol

x. [x]

Such that [x. [x]]x:T. [x](x= x. [x])

44

Maps (Conservative)

S type T type

Map(T, S) type

x:T ͵f(x):S f: Map(T, S) t:T
---------------------- --------------------------------

f: Map(T, S) f(t):S

May include

x:A ͵f(x):B in declarations

45

Group Theory

• Let T be a type in GTh=Th(N,, )

G ̗ [z: TT T. φ[z]]

Where φ[z] are the axioms of group theory.

The notion of group depends upon the type.

46

Groups in Set Theory

47

Circles in Geometry

48

Topological Space in a Theory with
Sets

Topological Space

F: Set(Set(U))

F

UF

GFG F

f, g Ffg F

49

Admissible Specifications

In the classical theory of definitions, there are
coherence/consistency constraints.

Conservative: By defining new things, one cannot
deduce anything new about old ones.

Eliminability: Anything said about new things can be
reduced to something said about old ones

50

Grammatical Extension

Most of the notions of FOL have to be newly
defined for TPL.

Let T1 and T2 be two theories. T2 is a
Grammatical Extension of T1 iff

I. If T1͵ ˒ prop then T2͵ ˒ prop

II. If T1͵ T type then T2͵ T type

III. If T1͵ t :T type then T2͵ t:T

51

Conservative Extension

Has to be redefined for TPL.

Let T2 be a grammatical extension of T1. It is a
Conservative Extension iff

If T1͵ ˒ prop then

T2͵˒ implies T1͵˒

52

Elimination

Let T2 be a grammatical extension of T1 . It is a
Elimination Extension iff

If T2͵ ˒ prop then for some ˕

we have

T1͵˕prop and T2͵ ˒˕

53

Translations

These, and other more complex relationships
between theories, are often established by the
construction of a translation

*:T1 T2

* is Sound iff

I. If T1͵ ˒ prop then T2͵ ˒* prop

II. If T1͵ T type then T2͵ T* type

III. If T1͵ t :T type then T2͵ t*:T*

IV. If T1͵˒ then T2͵ *˒

54

VI. MODELS

55

Set Theoretic Models

• Types are modelled as sets.

• Relations and functions are set theoretic
relations and functions over those sets.

• Soundness and Completeness - standard
arguments for general case.

• But many technical complications.

• Still unhappy: treatment inelegant.

56

Category Theoretic Models

• Use the type-category relationship.

• E.g. Typed Lambda calculus and Cartesian
closed categories

• Each type theory requires a different theory of
categories.

• Dependent type theories require local
theories

57

Recursive Models

• Terms modelled as numbers
• Equality to be decidable
• The sigma relations, operations and types are modelled

as codes of RE sets/relations
• Some of our theories have a recursive model.
• Proof theoretically very weak.
• For complexity reasons one might wish to design

theories that are interpretable inside primitive
recursive or even polynomial arithmetic. One then has
to pay attention to induction principles.

• Proofs are hard ; lots of techniques required. See
Feferman 95 and Turner 96.

58

VII. SUBTYPES

59

Why Subtypes

• Expressive power

• Enables logical information to be incorporated
into type stipulation

• Allows more fine grained types and so more
total functions.

60

Subtypes

61

Function Types

Given sets and subtypes we can define a type
of functions in the classical way as single
valued relations.

62

The Addition of Subtypes is
Conservative (very often)

Each type proposition and T is translated (Via *)
Types break into 2 parts

i. A type T

ii. A predicate T over T

Such that

Theorem: If ͵ t:T then * ͵ t*:T and

* ͵ T(t*)

We shall see applications shortly.

63

VIII.ABSTRACT TYPES

64

Dependent Products

65

Relations as Types

In the presence of subtypes and abstract types
these two notions are interchangeable.

66

Textbook Definition

A group is a pair of objects: a set, G, together
with an operation that combines any two
elements a and b to form another element,
denoted

a • b.

To qualify as a group, the set and operation,
(G, •), must satisfy four requirements known
as the group axioms.

67

Groups as Types

The elements of the type of groups are pairs consisting of a
group and an operation on it which together satisfy the
group axioms. This is a more direct formalisation of the
informal notion. It requires subtypes and dependent
product types.

68

IX. POLYMORPHISM IN

MATHEMATICS

69

Explicit Polymorphism in TPL

For each theory Th, add a universal type U which is
closed under the type constructors of the theory e.g.

Plus U type

In some cases e.g. where there are RE models

U: U

70

Categories

• A category C consists of the following three
mathematical entities:

• ob(C), whose elements are called objects;

• hom(C), whose elements are called arrows. Each arrow
f has a unique source object a and target object b. We
write f: a → b, and we say "f is a morphism from a to
b". We write hom(a, b) (or Hom(a, b), or homC(a, b), or
Mor(a, b), or C(a, b)) to denote the hom-class of all
morphisms from a to b.

• A binary operation, called composition of arrows, such
that

71

A Theory for Categories

Our objective is to formulate the
background type theory for Category theory

CAT=Th(U, ∑, Map) + Subtypes

72

Categories

The arrows and objects are types rather than sets.
The type theory is a minimal theory for the
constructions of basic category theory.

73

Functors

74

X. GENERALISED

COMPUTABILITY

75

Church-Turing

• Applies to numbers but there have been many
attempts to generalise to more general
mathematical systems.

• For numbers, Turing computable relations are
characterised as those relations definable by
disjunction, conjunction, existential
quantification and bounded quantification –
the propositions

76

Sigma Propositions

• φ is iff it is constructed from atomic
propositions via , and .

• φ is iff φ is and ¬φ is provable
equivalent to a proposition

• Applies to any theory of types but in some
theories there maybe additional logical
connectives and quantifiers.

• Completeness requires self reference and
diagonalisation.

77

Generalised Computability

• This provides a generalised computability theory
that extends Church-Turing computability to
arbitrary type theories cast within TPL.

• Justification is that the notions of and in
Peano arithmetic are logical characterisations of
CT computability and in arbitrary type theory
these notions get mapped to their arithmetic
cousins.

Research topic: extend the work in recursion theory
to arbitrary type theories. Explore the issue of

Turing completeness. Here is a start

78

Recursive and RE Relations

Definition

R ̗ [x1:T1,...,xn:Tn . φ[x₁,...,xn]]

is Recursively Enumerable iff φ is . R
is Recursive if φ is .

79

XI. RECURSIVE DEFINITIONS

80

The Form of Recursive Definitions

81

Recursion operator taken from Gödel's
Functionals of finite type

82

Which Theories Support Recursion?

• PA

• Typed Finite Set Theory

• May take them as primitive

• With a universe we can have recursive type
definitions.

83

XII. OTHER APPLICATIONS

84

Areas of Application

1) Non Standard Logics

2) Logics of Computation: Hoare logic, Dynamic
Logic, Domain logic, Process algebra,...

3) Formal Ontology: sortal logics, mereology,
events and time, process logic etc.

4) Semantics: ask Chris.

85

Logics of Computation

• See CSEE slides on my web page

86

Application to Formal Ontology

Exercise: Develop Type theories with types such as
Events
Individuals, properties and relations
Time
Mereology
Collections
.
.

Exercise.
Formalise a standard formal ontology such as that of
Smith or Zalta. PhD topics.

87

Application to Semantics

Ontology required for semantics theory

Propositions, events, properties,...

Descriptive Semantics; see Fox and Turner
forthcoming

88

How to develop highly Intensional
logics: Inner and Outer Logics

Prop type

prop : Prop
--------------- -----------------
: Prop prop

prop prop
--------------- -----------------
T[] prop T[]

89

Modal Logics

prop prop
--------------- -----------------

[] prop []

90

