
General Schema Theory for
Genetic Programming with

Subtree-Swapping Crossover: Part I

Riccardo Poli rpoli@essex.ac.uk
Department Computer Science, University of Essex, Colchester, CO4 3SQ, UK

Nicholas Freitag McPhee mcphee@mrs.umn.edu
Division of Science and Mathematics, University of Minnesota, Morris, Morris, MN, USA

Abstract
This is the first part of a two-part paper which introduces a general schema theory for genetic
programming (GP) with subtree-swapping crossover. The theory is based on a Cartesian node
reference system which makes it possible to describe programs as functions over the space

���
and allows one to model the process of selection of the crossover points of subtree-swapping
crossovers as a probability distribution over

���
. In Part I, we present these notions and models

and show how they can be used to calculate useful quantities. In Part II we will show how this
machinery, when integrated with other definitions, such as that of variable-arity hyperschema,
can be used to construct a general and exact schema theory for the most commonly used types
of GP.

Keywords
Genetic Programming, Node Reference Systems, Models of Crossover, Schema Theory

1 Introduction

One of the most difficult tasks one has to face when developing theoretical models of a complex
system, such as genetic programming (GP), is choosing a suitable language in which to express
the theory. This involves identifying the crucial quantities on which to base the theory and
expressing them in a good representation, the outcome of this process being a set of useful
definitions. When these choices are correct, finding relationships between the quantities which
describe the system is a much easier task and the resulting theory is simpler and more compact,
easier to communicate, etc. How can one choose these theoretical building blocks well when
attacking a new unchartered domain? There is no simple and ready recipe here: intuition, luck,
reuse of concepts developed for other domains and a substantial amount of trial and error often
are key ingredients.

This paper is the first part of a two-part paper which introduces a general schema theory
for genetic programming (GP) with subtree-swapping crossover. In Part I we present the results
of our efforts to develop a suitable language in which we can express the theory. In particular
we will focus on the following ingredients: (1) a Cartesian node reference system which makes
it possible to describe the position of any node in any tree in a population univocally, (2) the
notion that programs (and various features of programs) are functions over the coordinates in
this reference system, and (3) the notion that the key elements of subtree-swapping crossover
and mutation operators can be modelled as probability distributions over ��� or �	� , respectively.
Other key notions, such as the definitions of schema and hyperschema, and the schema theorem

c

2003 by the Massachusetts Institute of Technology Evolutionary Computation 11(1): 53-66

R. Poli and N. F. McPhee

A

B E

C D F G

H

Figure 1: A sample syntax tree.

for subtree swapping crossovers will be introduced in Part II.1

The paper is organised as follows. Firstly, in Section 2, we introduce the notion of node ref-
erence systems. We use it to define the concepts of functions and probability distributions over
such reference systems in Section 3. Then, we show how these can be used to build probabilistic
models of different crossover operators (Section 4). Some conclusions are drawn in Section 5
where we also briefly summarise how the theory developed here will be used in Part II.

2 Node Reference Systems

Given a syntax tree like, for example, the one in Figure 1, representing the S-expression (A (B
C D) (E F (G H))), there are a variety of methods to indicate unambiguously the position
of one particular node in the tree.

One method is to use the path from the root node (D’haeseleer, 1994), which corresponds
to using a variable-dimensionality relative coordinate system. For example, as illustrated in
Figure 2, it would be possible to indicate node H in the syntax tree in Figure 1 using the list of
coordinates [2 2 1] which means “select the second argument of node A, then the second of node
E, then the first of node G”. This method, by definition, allows one to determine exactly the path
followed to reach a particular node in the reference system. However, it has the disadvantage of
not corresponding to our typical notion of a Cartesian reference system because the number of
coordinates necessary to locate a node grows with the depth of the node in the tree.

A better alternative from this point of view is to use a coordinate system in which the
nodes in the tree are organised into layers of increasing depth (as is frequently done when trees
are drawn). The nodes are then aligned to the left (as is illustrated in Figure 3) and an index
is assigned to each node in a layer. The layer number � and the index � can then be used to
define a Cartesian coordinate system. So, for example, the position of node G in Figure 1 could
be represented with the coordinates (2,3), meaning that it belongs to layer 2 (node A being in
layer 0) and that it is the fourth node in the layer (assuming that the index starts from 0). This
reference system, however, presents the problem that it is not possible to infer the structure of a

1Early versions of some of this work were presented in (Poli, 2001) and, to a lesser degree, (Poli and McPhee, 2001).
This two-part paper is much more detailed, however, and includes a number of new results and examples.

54 Evolutionary Computation Volume 11, Number 1

Schema Theory and Markov Chain Models for GP

A

B E

C D F G

H

[]

[1] [2]

[1 1] [1 2] [2 1] [2 2]

[2 2 1]

Figure 2: Variable-dimensionality relative node reference system.

E

D F G

A

B

C

H

0 1 2 3
Column

Layer

0

1

2

3

d

i

Figure 3: A tree-dependent Cartesian node reference system.

Evolutionary Computation Volume 11, Number 1 55

R. Poli and N. F. McPhee

0 1 2 3
Column

Layer

0

1

2

3

d

i

. . .

4 5

. . .

. . .

. . .

Figure 4: Maximal tree obtainable with nodes of arity 3 within a Cartesian reference system.
Only four layers are shown.

tree from the coordinates of its nodes. For example, if one knows that node H is at coordinates
(3,0), it is impossible to determine the coordinates of its parent node (in this case (2,3)).

A similar coordinate system but without this problem can be defined by assuming that the
trees in question have a predefined maximum arity ������ . Then one can define a node-reference
system like the previous one for the largest possible tree that can be created with nodes of arity������ . This maximal tree would include 1 node of arity ������ at depth 0, ������ nodes of arity������ at depth 1, ������� nodes of arity ������ at depth 2, etc. (see the example in Figure 4). Finally
one can use this maximal system to also locate the nodes of non-maximal trees using a subset
of the nodes and links in the maximal tree. This is illustrated in Figure 5, where we assume���������� . So, for example, node G in Figure 1 would have coordinates (2,4) while node H
would have coordinates (3,12). In this reference system it is always possible to find a node’s
parent, and consequently find the route to the root node from any given valid pair of coordinates.
This reference system has features similar to those of the one shown in Figure 2. However, it
corresponds more closely to the standard notion of a Cartesian reference system. If one chooses ����� to be the maximum arity of the functions in the function set, it is possible to use this
reference system to represent the structure of any program in any population. Because of these
properties, we will use this reference system in the rest of the paper.

Finally, it should be noted that in the Cartesian reference system in Figure 5 it is possible
to transform pairs of coordinates into integers by counting the nodes in the reference system
in breadth-first order. So, node �������! would correspond to the integer "$#&%(')&*(+ ��������,).- � . For
example, if ������/�0� , (2,1) corresponds to 5. Clearly, it is also possible to map integers into
node coordinates unambiguously, although not all the coordinates will refer to existing nodes in
non-maximal trees. We will use these properties to simplify the notation in some parts of this
paper.

3 Functions and Probability Distributions over Node Reference Systems

Given a node reference system it is possible to define functions over it. An example of such
functions is a function which represents a particular computer program. Given a pair of coordi-
nates, this function returns the primitive stored at these coordinates in a given syntax tree. For a
given program 1 one could, for example, define the function 23�������4�516 which returns the node
in 1 stored at position �������! if �7�8���9 is a valid pair of coordinates. If �������! is not in 1 then a

56 Evolutionary Computation Volume 11, Number 1

Schema Theory and Markov Chain Models for GP

A

B E

C D F G

H

E

D F G

A

B

C

H

0 1 2 3
Column

Layer

0

1

2

3

d

i

. . .

4 5

. . .

12. . .

Figure 5: Tree-independent Cartesian node reference system (right) representing the non-
maximal tree (left). Nodes and links of the maximal tree are drawn with dashed lines.

conventional default value, : , is returned to represent the absence of a node. For example, the
program 1 =(IF (AND x1 x2) (OR x1 x3) x1) represented in Figure 6 would induce
the following function: 2;��<��5<��41� =�?>A@ , 23�!BC��<8�516 =�ED�F�G , 23��BH�IBC�516 ��KJHL , 2;�!BH�4M��41� =�ON�P ,23�QM���<8�516 R�SN�P , 23�QM��IBC�516 R�SN�T , 23�7M��5M��41� ��U: , 2;�7M��5���41� ��VN�P , 23�QM���W8�516 X�VN�Y ,23�QM��5Z��516 /�[: , 23�7M���\8�516 /�]: , etc.. Obviously, this function could be represented as the
following table: 23�7�8���4�516 �� 0 1 2 3 4 ^&^I^

0 IF : : : :
1 AND OR x1 : :
2 x1 x2 : x1 x3 ^I^I^
3 : : : : :
...

...

So, programs can be seen as functions over the space �=� . Below we will refer to 23�7�8���5�41� as
the name function for 1 .

Another useful function is the size function _`�7�8���4�516 which represents the number of nodes
present in the subtree rooted at coordinates �������! in tree 1 , with the convention that _`�7�8���4�516 =�< if �������! indicates a nonexistent node. For example if ������a�b� the tree in Figure 1 has the
following size function: _`�7�8���4�516 �� 0 1 2 3 4 5 ^&^I^ 12 ^I^&^

0 8 0 0 0 0 0 0
1 3 4 0 0 0 0 0
2 1 1 0 1 2 0 ^&^I^ 0 ^I^&^
3 0 0 0 0 0 0 1
4 0 0 0 0 0 0 0
...

...
...

Evolutionary Computation Volume 11, Number 1 57

R. Poli and N. F. McPhee

OR

x2 x1 x3

IF

AND

x1

x1

0 1 2 3
Column

Layer

0

1

2

3

d

i

. . .

4 5

. . .

Figure 6: Syntax tree for the program (IF (AND x1 x2) (OR x1 x3) x1) represented
in a node reference system for nodes with maximum arity 3.

The size function can be defined using the name function:

_`�7�8���5�41� =�dc)He #
fhgji '�kml fjnpo�q�r k�sutCvI%('cwu* g l fjnpo8q7r k sptCv x �723�zy���{|�516 ~}�$:H p�

where
x �7� is a function which returns 1 if is true, 0 otherwise.

Other examples of useful node functions include:� The arity function ���7�8���4�516 which returns the arity of the node at coordinates �7�8���9 in
program 1 , and returns : or ��B by convention if �������! indicates a nonexistent node. For
example, for the tree in Figure 5, ����<8��<��41� a��M , ����BH�5<��516 ��[M , ���7M��IBH�41� /��< and���7M���W8�41� =�dB . Clearly this function could be defined as the composition of the node func-
tion 23�������4�41� mentioned above with a function |��y6 which returns the arity of primitivey : ���������4�516 ��E6�723�������4�41� � , where |�7:H could be defined to be : or ��B by convention.� The type function ���������4�516 which returns the data type of the node at coordinates �������! in1 . This could be defined as ���7�8���4�516 ��d�u��23�7�8���5�41� � where the function �u�zy| returns the
type of primitive y (with �u�Q:H =�$:).� The function-node function ���������4�516 which returns 1 if the node at coordinates �������! is in1 and it is a function, 0 otherwise. The number of internal nodes in 1 is therefore given by" #&� g ���������4�516 .
Similarly, it is possible to define functions on multiple trees, each with their own node-

coordinate system. An interesting function of this kind is the crossover-offspring size function_��H��� ' ��� ' ��� � ��� � �51 ' �51 � which returns the size of the offspring produced by replacing the sub-
tree rooted at coordinates ��� ' ��� ' in parent 1 ' with the subtree rooted at coordinates �7� � ��� � in
parent 1 � . Using the size function defined above we can write:_ � �7� ' ��� ' �5� � ��� � �41 ' �51 � ��O_`��<8��<��41 ' 	�X_���� ' ��� ' �51 ' - _`��� � ��� � �51 � u�
58 Evolutionary Computation Volume 11, Number 1

Schema Theory and Markov Chain Models for GP

Other useful functions of this kind will be introduced and used in the next section to model
different types of subtree crossover. Before we do that we need to introduce the notion of
probability distribution over a node reference system.

Most genetic operators used in GP require the selection of a node where a transformation
is performed which leads to the creation of an offspring (e.g. the insertion of a random subtree,
or of a subtree taken from another parent). In most cases the selection of the node is performed
using a stochastic process of some sort, and it is possible to model this process by assuming
that a probability distribution is defined over the nodes of each individual. If we use the node-
reference system introduced in the previous section, this can be expressed as a function:� �������u� 16 =�����u� A node at depth � and column � is selected in program 1(��� (1)

where we assume that � �7�8���u� 16 is zero for all the coordinates �������! which represent nonexistent
nodes in 1 .2 For example, if we consider the tree in Figure 5 and we select nodes with uniform
probability, then � �������u� 16 =� '� if there is a node at �������! , � �������u� 1� =�O< otherwise. If instead we
follow (Koza, 1992) and select functions with a probability 0.9 and any node with a probability
0.1, then � ��<��5<�� 1� �� � ��BH��<6� 16 �� � �!BC�IB�� 16 �� � �QM���W|� 16 ���<8� MH���HZ , � �7M��5<�� 1� �� � �QM��IB�� 16 ��� �QM��5��� 1� �� � ���8�IBAM8� 1� ���<8� <8B�MCZ , and � �������u� 1� =�O< for all other coordinate pairs.

There are many possible uses for this type of probability distribution. For example it is
possible to compute the probability � ���|� 1� that a node at depth � is selected in 1 :� ���|� 16 =�$c g � �������u� 16 p�
For instance, for the tree in Figure 5 and for the function � �������u� 1� given above, we would obtain� �7<�� 1� ���<���M,���HZ , � �!B�� 16 ��b<�� W��HZ,< , � �7M�� 16 ��b<���MC�HZ,< , � ���6� 16 ��b<8� <8B�MHZ , and � �7�6� 1� ���< for��� � .

Once � �7�6� 16 is defined it is possible to compute the expected depth of the nodes being
selected: ¡£¢ ¤ � 1�¥|�¦c # � �7�6� 1� �^I�8�
where

¤
is a stochastic variable representing the depth of the node selected. For example, if we

consider the function � ���|� 16 given above we obtain:¡§¢ ¤ � 1�¥|�E<8� MH���HZ�^�< - <8� W��,Z,<~^,B - <���MC�HZ,<~^�M - <�� <�B�MCZ�^&� - <8� <C<H<H<~^IW - ^I^&^��KBC� <C\CMCZ
The probability distribution � �7�8���p� 16 can also be used to compute the expected value of

numeric node functions, like for example the expected value of the size function for a particular
tree 1 ¡£¢ _`� ¤ �5¨8�41� &� 1�¥|� c # c g _`�7�8���4�516 � �7�8���u� 16 ¤

and ¨ being random variables representing the depth and column of the node
being selected, or other descriptors like the variance of the size function, i.e.¡b© �7_`� ¤ ��¨��516 	� ¡£¢ _`� ¤ �5¨8�41� &� 1�¥z �`ªªª 1�« .For the purpose of developing a general schema theory for GP, an important use of probabil-
ity distributions over node reference systems is for modelling crossover operators, as discussed
in the following section.

2For this probability distribution we use the notation ¬�¯®A°�±9² ³H´ rather than ¬�¯®A°�±Q°Q³H´ to emphasise the fact that¬�¯®A°7±9² ³H´ can be seen as the conditional probability of selecting node j®A°Q±µ´ if (or given that) the program being consid-
ered is ³ . In the rest of the paper, we will do the same for other probabilities distributions.

Evolutionary Computation Volume 11, Number 1 59

R. Poli and N. F. McPhee

4 Modelling Subtree-swapping Crossovers

It is quite easy to extend the previous ideas and model subtree-swapping crossover operators as
conditional probability distribution functions over the space �=� .

We can do that by considering the probability distribution3� �7� ' ��� ' ��� � ��� � � 1 ' �41 � =�E����¶ A node at depth � ' and column � ' is selected in parent 1 'and a node at depth � � and column � � is selected in parent 1 ��· �
with the convention � ��� ' ��� ' �5� � ��� � � 1 ' �51 � =�O< if �7� ' ��� ' is a nonexistent node in 1 ' or �7� � ��� �
is an nonexistent node in 1 � . It is then possible to compute the marginal probabilities:� ' ��� ' ��� ' � 1 ' �51 � =�¦c #4¸ c g ¸ � �7� ' ��� ' ��� � ��� � � 1 ' �41 �
and � � ��� � ��� � � 1 ' �41 � ��Oc #u¹ c g ¹ � �7� ' ��� ' �5� � ��� � � 1 ' �51 � u�
The first one of these gives the probability that the crossover point in the first parent will be��� ' ��� ' when the parents are 1 ' and 1 � . The second one does the same for the crossover points
in the second parent.4

These probability distributions can be used to compute important statistical descriptors
like the expected value (or the variance) of the crossover-offspring size function for parents 1 'and 1 � : ¡£¢ _ � � ¤ ' �5¨ ' � ¤ � ��¨ � �51 ' �41 � I� 1 ' �51 � ¥� c #u¹ c g ¹ c #4¸ c g ¸ _ � ��� ' ��� ' ��� � ��� � �51 ' �41 � � �7� ' ��� ' ��� � ��� � � 1 ' �41 � � _`�7<��5<��51 ' 	� c #u¹ c g ¹ c #4¸ c g ¸ _`�7� ' ��� ' �41 ' � �7� ' ��� ' �5� � ��� � � 1 ' �41 � - c # ¹ c g ¹ c # ¸ c g ¸ _`��� � ��� � �41 � � �7� ' ��� ' �5� � ��� � � 1 ' �51 � � _`�7<��5<��51 ' 	�3c #u¹ c g ¹ _���� ' ��� ' �51 ' � ' �7� ' ��� ' � 1 ' �51 � (2)- c # ¸ c g ¸ _���� � ��� � �51 � � � �7� � ��� � � 1 ' �51 � u�
where

¤ g and ¨ g are random variables representing the depth and column of the node being
selected in parent 1 g .

Not surprisingly, this result indicates that
¡£¢ _��H� ¤ ' �5¨ ' � ¤ � �5¨ � �41 ' �51 � I� 1 ' �41 � ¥ is given by

the size of the first parent minus the mean size of the subtree removed from 1 ' plus the mean
size of the subtree removed from 1 � . However, note that the mean size of the subtrees removed
from 1 ' is not the same quantity as the mean size of the subtrees in 1 ' : the former is calculated
using the probability distribution � ' ��� ' ��� ' � 1 ' �51 � , the latter using the probability distribution

3In this paper we assume that, for any given pair of parents, the stochastic algorithm that selects the crossover points
does not change its behaviour over time. However, all of the results in the paper can trivially be generalised to the case of
time-varying (e.g., adaptive) operators, by simply adding º to the list of conditioning variables, e.g., using the conditional
probability distribution ¬�¯®¼»p°�±Q»p°7® � °�± � ² ³�»4°7³ � °Qº�´ instead of ¬�j®¼»p°�±Q»p°7® � °�± � ² ³�»4°7³ � ´ as a model of crossover.

4In general, ¬�»p¯®A»p°�±Q»I² ³�»4°7³ � ´¾½¿ ¬�j®¼»p°�±Q»I² ³�»�´ and ¬ � j® � °7± � ² ³�»4°Q³ � ´À½¿ ¬�j® � °Q± � ² ³ � ´ , as will become clear later
in this section.

60 Evolutionary Computation Volume 11, Number 1

Schema Theory and Markov Chain Models for GP

� �7� ' ��� ' � 1 ' . A similar argument applies to the mean size of the subtrees removed from 1 � for
insertion.

If the selection of the crossover points is performed independently in the two parents, then� ��� ' ��� ' �5� � ��� � � 1 ' �51 � =� � �7� ' ��� ' � 1 ' 	^ � ��� � ��� � � 1 � u�
where � �7�8���p� 16 is defined in Equation 1. We will call crossover operators with this property
separable.

With functions and probability density functions over node reference systems in hand we
can probabilistically model a huge variety of subtree-swapping crossover operators. A few im-
portant examples on how to do this are given in the next subsections. Thanks to these probabilis-
tic models of crossover, it is possible to develop a general schema theory for GP as described in
Part II.

4.1 Standard Crossover
The most well-known and frequently used type of subtree-swapping crossover operator is the
one defined in (Koza, 1992). In this operator the offspring is created by removing a random
subtree from one parent and replacing it with a random subtree taken from the other parent. We
will call this type of operator standard crossover.

Standard crossover is a separable operator. Indeed, assuming uniform selection of the
crossover points,��ÁuÂ�ÃIÄ|Å&Æ Ç ��� ' ��� ' ��� � ��� � � 1 ' �51 � =� ��ÁuÂ�ÃIÄ|ÅIÆ Ç ��� ' ��� ' � 1 ' �^ ��ÁuÂ�ÃIÄ|ÅIÆ Ç ��� � ��� � � 1 �
with ��ÁpÂ7ÃIÄ|ÅIÆ Ç �7�8���u� 16 �� x �723�������4�41� ~}�$:H _`�716
where _`�716 =�O_���<��5<��41� is the number of nodes in 1 and 23�������4�516 is the name function defined
in Section 3. So,� ÁpÂ�Ã&Ä|ÅIÆ Ç �7� ' ��� ' �5� � ��� � � 1 ' �41 � =� x �723��� ' ��� ' �51 ' È}�O:H x ��23�7� � ��� � �41 � È}�E:C _`�71 ' �_`�71 � � (3)

For standard crossover with a 90%-function/10%-any-node selection policy (see (Koza,
1992)), it is easy to show that� ÁuÂ�Ã&É +pÊ ' + �7�8���p� 16 ���<8� Ë ���7�8���4�516 " # " g ���7�8���4�516 - <8�hB

x ��23�7�8���5�41� Ì}�$:H _`�716 �
where ���7�8���4�516 is the function-node function defined in Section 3. Thus,� ÁuÂ�Ã&É +pÊ ' + �7� ' ��� ' �5� � ��� � � 1 ' �51 � À� (4)Í <8� Ë ���7� ' ��� ' �41 ' " # " g ���������4�51 ' - <��jB

x �723��� ' ��� ' �51 ' ~}�$:H _`�71 ' Î¦ÏÍ <8� Ë ���7� � ��� � �41 � " # " g ���������4�51 � - <��jB
x �723��� � ��� � �51 � ~}�$:H _`�71 � Î �

Note that for separable operators, the marginal distributions are � ��� ' ��� ' � 1 ' �51 � Ð�� �7� ' ��� ' � 1 ' and � ��� � ��� � � 1 ' �51 � �� � �7� � ��� � � 1 � , whereby Equation 2 becomes¡£¢ _ � ��� ' ��� ' ��� � ��� � �51 ' �41 � I� 1 ' �51 � ¥(�O_`��<8��<8�51 ' 	� ¡£¢ _���� ' ��� ' �51 ' I� 1 ' ¥ - ¡£¢ _`��� � ��� � �51 � &� 1 � ¥Q�
Evolutionary Computation Volume 11, Number 1 61

R. Poli and N. F. McPhee

4.2 One-point Crossover
One-point crossover (Poli and Langdon, 1997b; Poli and Langdon, 1998; Langdon and Poli,
2002) works by selecting a common crossover point in the parent programs and then swapping
the corresponding subtrees, like standard crossover. To account for the possible structural di-
versity of the two parents, one-point crossover analyses the two trees from the root nodes and
considers for the selection of the crossover point only the parts of the two trees (common region)
which have the same topology (i.e. the same arity in the nodes encountered traversing the trees
from the root node).

So, in one-point crossover the selection of the crossover points in the two parents is
not performed independently. Indeed, the first and second crossover points must have the
same coordinates. To model this operator we define the common region membership functionÑ �������4�51 ' �41 � which returns 1 when �������! is part of the common region of 1 ' and 1 � . Formally,Ñ �������4�51 ' �41 � =�KB when either �7�8���9 =�?��<8��<� or�3� parent �������! u�51 ' À���3� parent �������! p�41 � ~}�E<���3�Q�8���4�51 ' ¾ÒÓ<8�`�3�7�����4�41 � �ÒÓ<��Ô�Õ×Ö Ñ � parent �������! p�41 ' �41 � =�dBC�
where parent �������! =�?���|��BC��Øz�!Ù, �����IÚ , Ø9^ Ú is the integer-part function and � is the arity function
defined in Section 3. This allows us to formalise the notion of common region:Û �71 ' �41 � =�K���������! �� Ñ �������4�51 ' �41 � ��KBH�C� (5)

If we use a uniform probability of node selection, then� '9Ü Â �7� ' ��� ' ��� � ��� � � 1 ' �41 � =� ¶ B¼Ù¼ÝßÞ§�71 ' �41 � if ��� ' ��� ' =�?��� � ��� � and �7� ' ��� ' ¾à Û �Q1 ' �51 � ,< otherwise,
(6)

where ÝßÞ��71 ' �51 � is the number of nodes in the common region
Û �71 ' �41 � . This can also be

expressed as:� '!Ü Â �7� ' ��� ' �5� � ��� � � 1 ' �41 � á� Ñ ��� ' ��� ' �51 ' �41 � Ñ ��� � ��� � �51 ' �41 � x ����� ' ��� ' =�â�7� � ��� � � ÝßÞ£�Q1 ' �51 � �
Incidentally, given this definition it is easy to show that� ' ��� ' ��� ' � 1 ' �41 � �� Ñ ��� ' ��� ' �51 ' �41 � ÝßÞ��71 ' �51 �
and � � �7� � ��� � � 1 ' �51 � =� Ñ ��� � ��� � �51 ' �41 � ÝßÞ��Q1 ' �51 � �
Thus for one-point crossover,¡£¢ _��H��� ' ��� ' ��� � ��� � �51 ' �51 � &� 1 ' �51 � ¥V� _`��<8��<��41 ' 	�" # ¹ " g ¹ _���� ' ��� ' �51 ' Ñ �7� ' ��� ' �41 ' �51 � ÝßÞ§�71 ' �41 � -

" #4¸ " g ¸ _���� � ��� � �51 � Ñ �7� � ��� � �41 ' �51 � ÝßÞ§�71 ' �41 � �
62 Evolutionary Computation Volume 11, Number 1

Schema Theory and Markov Chain Models for GP

4.3 Strict One-point Crossover
Similarly, it is possible to model strict-one point crossover (Poli and Langdon, 1997a). In strict
one-point crossover, the crossover points in the two parents are constrained not only to be at
the same coordinates, but also to belong to a region, the strict common region, which is defined
below. Let us start by defining the strict common region membership function ã Û �������4�41 ' �41 � which returns 1 when either �7�8���9 =�?��<8��<� or2ä� parent �������! u�51 ' À��2b� parent �������! p�41 � ~}�$:��20�Q�8���4�51 ' È}�E:��`2b�������4�51 � ~}�$:��Ô�Õ�Ö ã Û � parent �7�8���9 u�51 ' �51 � ��dBH�
where, again, parent �������! ��å�����$BH��Øµ��Ù¼ �����IÚ while 2 is the name function defined in Sec-
tion 3. This allows us to define the notion of strict common region:_ Û �71 ' �41 � =�K���������! ��Iã Û �������4�51 ' �41 � =�dBH�C� (7)

If we use a uniform probability of node selection, then�8æµÂ7çzÆ èmÂ '9Ü Â ��� ' ��� ' ��� � ��� � � 1 ' �51 � =��é BAÙ¼Ýßê×Þ§�71 ' �41 � if ��� ' ��� ' =�?��� � ��� � and��� ' ��� ' ¾àa_ Û �71 ' �51 � ,< otherwise,
(8)

where Ýßê×Þ§�71 ' �51 � is the number of nodes in _ Û �71 ' �51 � .
4.4 Context-preserving Crossover
In context-preserving crossover (D’haeseleer, 1994), the crossover points are constrained to have
the same coordinates, like in one-point crossover. However, in this case no other constraint is
imposed on their selection (i.e., they are not limited to the common region). In order to model
context-preserving crossover, we define the position match function

��ë3�7� ' ��� ' �5� � ��� � �41 ' �51 � ��bé B if �7� ' ��� ' ��â��� � ��� � , 23��� ' ��� ' �51 ' ~}�$:and 23��� � ��� � �41 � È}�E: ,< otherwise.

Then, we can write:��è9ì�Å4Â7í � Â �7� ' ��� ' �5� � ��� � � 1 ' �41 � á� ��ë��7� ' ��� ' ��� � ��� � �51 ' �51 � " # ¹ " g ¹ " # ¸ " g ¸ ��ë��7� ' ��� ' �5� � ��� � �41 ' �51 � � �Àë���� ' ��� ' ��� � ��� � �51 ' �41 � " # " g ��ë��7�8���4�������4�51 ' �41 � �
4.5 Strongly Typed GP Crossover
In strongly typed GP crossover (Montana, 1995), the crossover point in the first parent is selected
randomly. The crossover point in the second parent is selected only among the nodes of the
same type as the first crossover point. If no nodes of that type exist in the second parent then
two alternatives are available: one of the parents can be returned, or nothing is returned. In this
second case crossover has to be attempted again. Here we model a version of this second type
of crossover in which a new attempt is made using the same two parents. Since the root node is
of the same type in all individuals, a pair of valid crossover points always exists.

We start by introducing the type match functionî ë3�7� ' ��� ' �5� � ��� � �41 ' �51 � =� ¶ B if ���7� ' ��� ' �41 ' =������� � ��� � �41 � ~}�O: ,< otherwise,

Evolutionary Computation Volume 11, Number 1 63

R. Poli and N. F. McPhee

where ���������4�516 is the type function defined in Section 3. Using this, we can then write:� æzÂ�ï Ü ��� ' ��� ' ��� � ��� � � 1 ' �41 � á� î ë;�7� ' ��� ' �5� � ��� � �41 ' �51 � " #u¹ " g ¹ " #4¸ " g ¸ î ë3�7� ' ��� ' �5� � ��� � �41 ' �51 � �
4.6 Size-fair Crossover
In size-fair crossover (Langdon, 1999; Langdon, 2000) the first crossover point is selected ran-
domly like in standard crossover (choosing functions with a probability 0.9 and any node with
a probability 0.1). Then the size of the subtree to be excised from the first parent is calculated.
This is used to constrain the choice of the second crossover point so as to guarantee that the
subtree excised from the second parent will not be “unfairly” big.

An approximate model for size-fair crossover (Langdon, 1999; Langdon, 2000) is the fol-
lowing:� æzÆ ð9í9ñ � Æ ç ��� ' ��� ' ��� � ��� � � 1 ' �51 � á� � ÁpÂ7Ã&É +4Ê ' + ��� ' ��� ' � 1 ' � æ�Æ ð9í9ñ � Æ ç ��� � ��� � � 1 � �5_`�7� ' ��� ' �41 ' � u�
where � æ�Æ ð9í9ñ � Æ ç �������u� 1��4òA ��?óÈô �71õ�5òA if BÈö�_`�7�8���5�41� �ö MHò - B ,< otherwise.

(9)

The function ô �71õ�5òA is a relatively complicated function of the following quantities:÷ i � cf #&� g k9øCù x �Q_`�������4�516 ��úòA ÷ % � cf #&� g k9øCù x �Q_`�������4�516 �ûúòA ÷ + � cf #&� g k9øCù x �Q_`�������4�516 =�EòA üaý ÷ i � c # c g �Q_`�������4�41� 	��òA x �Q_`�������4�516 ���ò� üaý ÷ % � c # c g �Qò���_`�7�8���5�41� � x �Q_`�������4�516 �û�ò�
(see (Langdon, 1999; Langdon, 2000) for more details).

The expression of ��æzÆ ð9í9ñ � Æ ç ��� ' ��� ' ��� � ��� � � 1 ' �41 � is only an approximate description of the
behaviour of size-fair crossover because it does not model the atypical events in which ÷ i �÷ + �$< or ÷ % � ÷ + �O< . In these cases the selection of the crossover point in the first parent is
repeated, which means that this is chosen according to a probability distribution slightly different
from � ÁpÂ�Ã�É +pÊ ' + �7� ' ��� ' � 1 ' . This then makes the choice of the crossover points in the two parents
dependent, like for one-point crossover. It is possible to derive an exact model of size-fair
crossover in terms of conditional probability distributions, but this is beyond the scope of this
paper.

5 Conclusions

This paper is Part I of a two-part paper in which a general schema theory for genetic program-
ming with subtree swapping crossover is presented. In this part, we have presented the most
important components of a mathematical language that we have developed to express the the-
ory.

64 Evolutionary Computation Volume 11, Number 1

Schema Theory and Markov Chain Models for GP

The first step has been the definition of a reference system which makes it possible to
describe the position of any node in any tree in a population unambiguously. This has then made
it possible to represent programs as functions over the coordinates in this reference system, or
more generally over ��� . This has allowed us to formalise the definition of a variety of other
functions that describe important program features and that are instrumental in simplifying the
theoretic results in Part I and II. Among these are some probability distributions over single
node reference systems or pairs of reference systems (or more generally over �À� or �×�), which
describe the selection of mutation or crossover points. In this paper, we have provided precise
probabilistic models of this type for a variety of crossover operators, including, for example,
standard crossover, one-point crossover, and strongly-typed-GP crossover among others. These
models can be used to compute a variety of quantities, like for example the mean size of the
subtrees present in a tree, or the expected size of offspring produced by two specific parent
trees.

In Part II we will show how this machinery, when integrated with other notions, such as
the GP schema and the variable-arity hyperschema, can be used to construct a general and exact
schema theory for the most commonly used types of GP. The theory will include two main results
describing the propagation of GP schemata: a microscopic and a macroscopic schema theorem.
The microscopic version is applicable to any crossover operator which replaces a subtree in
one parent with a subtree from the other parent to produce the offspring. The macroscopic
version is valid for subtree-swapping crossover operators in which the probability of selecting
any two crossover points in the parents depends only on their size and shape. Consequently,
these theorems can be applied to model most GP systems used in practice.

In Part II, we will also show how this theory can be used to obtain other general results,
such as a size-evolution equation for GP with subtree-swapping crossover, and we will provide
a variety of examples and the results of numerically integrating schema-evolution equations.

Acknowledgements

The authors would like to thank Jon Rowe, Julian Miller, Xin Yao, and W. B. Langdon for
useful discussions and comments on various parts of the work reported in this paper. Nic thanks
The University of Birmingham School of Computer Science for graciously hosting him during
his sabbatical, and various offices and individuals at the University of Minnesota, Morris, for
making that sabbatical possible. Riccardo would like to thank the members of the NEC (Natural
and Evolutionary Computation) group at Essex for helpful comments and discussion.

References
D’haeseleer, P. (1994). Context preserving crossover in genetic programming. In Proceedings of the 1994

IEEE World Congress on Computational Intelligence, volume 1, pages 256–261, Orlando, Florida,
USA. IEEE Press.

Koza, J. R. (1992). Genetic Programming: On the Programming of Computers by Means of Natural
Selection. MIT Press, Cambridge, MA, USA.

Langdon, W. B. (1999). Size fair and homologous tree genetic programming crossovers. In Banzhaf,
W., Daida, J., Eiben, A. E., Garzon, M. H., Honavar, V., Jakiela, M., and Smith, R. E., editors,
Proceedings of the Genetic and Evolutionary Computation Conference, volume 2, pages 1092–1097,
Orlando, Florida, USA. Morgan Kaufmann.

Langdon, W. B. (2000). Size fair and homologous tree genetic programming crossovers. Genetic Pro-
gramming and Evolvable Machines, 1(1/2):95–119.

Langdon, W. B. and Poli, R. (2002). Foundations of Genetic Programming. Springer-Verlag.

Montana, D. J. (1995). Strongly typed genetic programming. Evolutionary Computation, 3(2):199–230.

Evolutionary Computation Volume 11, Number 1 65

R. Poli and N. F. McPhee

Poli, R. (2001). General schema theory for genetic programming with subtree-swapping crossover. In
Genetic Programming, Proceedings of EuroGP 2001, LNCS 2038, pages 143–159, Milan. Springer-
Verlag.

Poli, R. and Langdon, W. B. (1997a). Genetic programming with one-point crossover. In Chawdhry, P. K.,
Roy, R., and Pant, R. K., editors, Soft Computing in Engineering Design and Manufacturing, pages
180–189. Springer-Verlag London.

Poli, R. and Langdon, W. B. (1997b). A new schema theory for genetic programming with one-point
crossover and point mutation. In Koza, J. R., Deb, K., Dorigo, M., Fogel, D. B., Garzon, M., Iba, H.,
and Riolo, R. L., editors, Genetic Programming 1997: Proceedings of the Second Annual Conference,
pages 278–285, Stanford University, CA, USA. Morgan Kaufmann.

Poli, R. and Langdon, W. B. (1998). Schema theory for genetic programming with one-point crossover
and point mutation. Evolutionary Computation, 6(3):231–252.

Poli, R. and McPhee, N. F. (2001). Exact schema theorems for GP with one-point and standard crossover
operating on linear structures and their application to the study of the evolution of size. In Genetic
Programming, Proceedings of EuroGP 2001, LNCS 2038, pages 126–142, Milan. Springer-Verlag.

66 Evolutionary Computation Volume 11, Number 1

