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Abstract— In recent work we have formulated a model of
emergent coordinated behaviour for a population of interacting
entities. The model is a modified spring mass model where
masses can perceive the environment and generate external
forces. As a result of the interactions the population behaves
like a single organism moving under the effect the vector sum of
the external forces generated by each entity. When such forces
are proportional to the gradient of a resource distribution f(x),
the resultant force controlling the single emergent organism is
proportional to the gradient of a modified food distribution.
This is the result of applying a filtering kernel to f(x). The
kernel is typically a low-pass filter.

This model can be applied to genetic algorithms (GAs)
and other population-based search algorithms. For example,
in previous research, we have found kernels (via genetic
programming) that allow the single organism model to track
the motion of the centre of mass of GAs and particle swarm
optimisers accurately for many generations.

In this paper we corroborate this model in several ways.
Firstly, we provide a mathematical proof that on any problem
and for any crossover operator, the effect of crossover is
that of reducing the amplitude of the derivatives (slopes) of
the population distribution. This implies that a GA perceives
an effective fitness landscape which is a smoothed, low-pass
filtered version of the original. Then, taking inspiration from
this result and our active mass-spring model, we propose a
class of fitness functions, OneMix, where there is an area
of the landscape with high frequency variations. This area
contains the global optimum but a genetic algorithm with high
crossover probability should not be able “see” it due to its
low-pass behaviour. So, a GA with strong crossover should be
deceived and attracted towards a local optimum, while with low
crossover probability this should not happen. This is, indeed,
what happens as we demonstrate with a variety of empirical
runs and with infinite-population model simulations. Finally,
following our earlier approach, we also evolved kernels for
OneMix, obtaining again a good fit between the behaviour of
the “single-organism” hill-climber and the GA.

I. INTRODUCTION

Many animals live within groups, although, from an indi-
vidual’s point of view, there are clear disadvantages in doing
so. For example, in a school, individual fish have limited
perception, as their vision is occluded by other individuals
and very little light reaches the interior of a school. They
have reduced oxygen (so much so that when the school is
very tight, like for example in the presence of a predator,
fish may even faint). Also, food found by a group member
will have to be shared with the rest of the group. So, one
may ask, why should individuals stay in a group?

There are obvious benefits of living in groups. For exam-
ple, there are many things that a group of individuals can do

that an isolated individual cannot. The group has increased
action and reaction capabilities. Furthermore, a group may
have increased sensing capabilities, in the sense that, due to
their natural drive towards copying the behaviour of other
individuals, it is sufficient to have a small number of in
informed individuals for the information to rapidly spread to
the whole group. A group clearly has collective information
processing capabilities the extent of which is still largely un-
known (but, there is evidence that they lead to some form of
group intelligence). All this increases the survival capabilities
of each individual. Through these extended capabilities, in
many circumstances, a group behaves like a single organism.

One might think that modelling group behaviour may
be very difficult. It appears, however, that this is not the
case. That is, rich sets of behaviours can often be explained
and modelled using very simple models. For example, it is
possible to observe the emergence of realistic fish school
behaviours in models [1] where each fish is a simple agent
controlled by forces which implement three basic desires: a)
behave like your neighbours, b) stay in proximity of other
fish, and c) avoid hurting yourself by keeping at a minimum
distance from other fish.

Many population-based search algorithms take inspiration
from some natural system involving groups of interact-
ing individuals. E.g., particle swarm optimisers (PSOs) are
controlled by forces representing cognition and sociality,
respectively. In genetic algorithms (GAs) individuals interact
through crossover and sample the subspace represented by
the convex hull of the population, which is a sort of “social”
bias towards sampling areas where other individuals are
located. As a result of these interactions search algorithms
show complex emergent behaviours, like the ability to avoid
getting stuck in local optima. That is, these systems too
appear to have new, extended sensing and acting capabilities.
A fundamental question is then to what degree can we
interpret and model the behaviour of a population-based
search algorithms as that of a corresponding single organism
“living” in the same space as the original individuals? In
the following sections we will try to answer this question.

II. ACTIVE-MASS/SPRING MODEL OF POPULATIONS

To start addressing this question, in [2] we proposed an
active-mass/spring model of emergent coordinated behaviour.
Since this is the effective inspiration for the work presented
here, we summarise it in this section.



Let us imagine that the environment is simply represented
by a function f(x) which describes the resource distribution
at each point in space. In the case of an artificial system, like
a population-based search algorithm, we can think of this as
some objective function.

We assume that each individual in a population is a little
mass located at some point in the landscape f(x). The
individual has an active control system and can perceive the
environment and act accordingly to maximise its resources.

A. Perception

Perception is limited to a certain area around each indi-
vidual. Individual animals have to spend time and energy
to move to different locations, so sometimes a nearby place
may be preferable to further away places even if more distant
places provide more food. So, the net value that an animal
could gain per unit of food available is some decreasing
function ω(d) of the distance d from the current location.
Also, rather naturally, animals prefer places where there
are plenty of resources, so the attractiveness of a particular
location depends on the average of the available perceived
resources. So, we model the perceived attractiveness of the
environment as

a(x) =

∫

f(y)ω(x − y)dy

B. Action

We expect each individual to move in order to maximise
the perceived attractiveness of its position. We model this
by assuming the individual follows the gradient of a(x) by
generating a force

F (x) = η∇a(x) = η

∫

f(y)∇ω(x − y)dy

where η is a constant.

C. Emergent coordinated behaviour

Now let us assume that individuals interact with other
individuals via springs. If the springs are stiff, the population
behaves like a rigid body. The motion of the centre of mass
x of the population is controlled by a force

F (x) =
∑

i

Fi = η
∑

i

∇a(xi) = η
∑

i

∇a(x + δi)

where δi = xi − x. So,

F (x) = η

∫

f(y)∇ωp(x − y)dy,

where
ωp(z) =

∑

i

ω(z + δi).

Therefore, the motion of the population is controlled by a
force which is proportional to the convolution between the
resource distribution and the gradient of a new, coarser-grain
kernel, ωp, representing the perceptual and motor capabilities
of the population seen as a single individual. That is, the
interactions between individuals transfer information and
coordinate behaviour, without any centralised mechanism.

The situation is not very different if we reduce the stiffness
of the springs.

D. What is like to be a population

This single (emergent) organism moves in the environment
following the gradient of an attractiveness function

ap(x) =

∫

f(y)ωp(x − y)dy.

So, the food distribution (read fitness function) is seen by the
population through the lens of a filter/kernel. If the receptive
fields, ω, of each individual are delta functions, i.e., each
individual has no knowledge about its neighbourhood, then
ωp is a moving-average-type low-pass filter.

To give a feel for what being a population might be like,
Figure 1 shows a simple fitness function obtained by sum-
ming three Gaussians and two-low pass filtered versions of it.
These simulate the landscape explored by a population (seen
as a single individual) with different interaction strengths
between individuals. They have been obtained by convolving
the original with Gaussian low-pass filters of with different
cut-off frequencies. As one can see, the landscape may look
very different to the population, for example, changing from
multimodal to unimodal, and, so, becoming potentially easier
to search. The low-pass filtering performed by a population,
however, does not always imply making the problem easier,
as exemplified in Figure 2, where due to interactions a
population is deceived into searching an area which does
not contain a global optimum.

III. REALITY OR SCIENCE FICTION?

The model presented in the previous section is very simple,
and yet it appears to capture the fundamental features of
systems, like schools of fish and some population based algo-
rithms, where complex coordinated behaviour emerges from
the interaction of relatively simple active components. There
are, however, obvious questions regarding the applicability of
this model. For example, one might object that a GA is not
a rigid body made up of masses and that crossover does not
provide spring-like interactions. The model might seem more
suitable to particle swarm optimisers, but even in that case
there are things that don’t seem to fit. For example, particles
in a PSO have memory and friction. So, really, in what sense
can we apply a spring-mass model to these systems?

The key idea is to think about the modelling process for
these systems in a new way. GAs, PSOs, evolution strategies,
etc., are complex systems with rich dynamics that are hard
to understand. Some exact models exist for these systems.
For example, both microscopic [8] and coarse-grained [6]
models of genetic algorithms exist. These models are very
useful and have provided a rich set of results. However,
despite the fact that these models have been applied to
study the behaviour of algorithms on landscapes that are
easy to understand (onemax, sphere, etc.), it is fair to say
that they can only occasionally provide simple and intuitive
(albeit approximate) explanations of the behaviour of genetic
algorithms.
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Fig. 1. A simple fitness function obtained by summing three Gaussians of
same amplitude and standard deviation, and two-low pass filtered versions
of it, which have been obtained by convolving the original with Gaussian
low-pass filters with different cut-off frequencies.
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Fig. 2. A simple fitness function obtained by summing three Gaussians of
same standard deviation but different amplitudes. The two-low pass filtered
versions of it show that a population-based algorithm might be deceived
into focusing the search in the wrong region.

To fix this problem one could propose to turn the mod-
elling approach on its head. Let us choose a system that we
understand well – e.g., a simple hill-climber – and let us use
it as an effective model for our population-based algorithm.
Let us then modify the original fitness function in such a
way that our simple model behaves as closely as possible to
the original. In replacing the original algorithm/system with
a simpler one we ignore many of the internal operations
of the original, and we should thus only expect to obtain
approximations. However, because we understand the new
system really well, in return, we can reasonably hope to
understand its behaviour (even if the transformed landscape
is complex). This behaviour provides an “effective” intuitive
explanation for the behaviour of the original system.

So, the purpose of the modelling effort is not to model the
original system in all its details, but to model the effective
behaviour of the original system. So, the resulting models
are useful if they can provide insights and predictions on the
behaviour of the original system.

In [2] we put this idea to the test. There, we used genetic
programming to evolve kernels such that a gradient-based
hill-climber could track the center of mass of a real algorithm
for 20 generations in 5 independent runs. The fitness function

for the kernels was

fkernel =

5
∑

r=1

20
∑

t=1

||x̄pop(t) − xHC(t)||

with xHC(0) = x̄pop(0). We used this approach for both
PSOs and GAs. The RMSE in tracking was surprisingly good
(despite our making the problem harder by initialising the
populations outside the area where the optima are). In all
cases, the evolved kernels were low-pass filters. Figures 3
and 4 show the landscapes as seen by the population (inter-
preted as a single individual performing hill-climbing) in the
case in which f(x) was the Rastrigin function.

IV. TOWARDS A LOW-PASS FILTERING THEORY FOR GAS

Although the model and results reported in the previous
sections may be very interesting, one may ask to what
degree can one prove that population based algorithms can
be seen as hill-climbers on a low-pass filtered version of the
landscape. In this section we describe some first steps in this
direction, which are based on the analysis of the first order
derivatives (differences) of the population distribution.

For simplicity, let us initially focus on a genetic
two-bit problem with any assignment of fitnesses
f(00), f(01), f(10), f(11). Let us assume that the
population is infinitely large and that the proportion
of the population occupied by strings of type
x = x1x2 ∈ {00, 01, 10, 11} is Φ(x).

If crossover has a low-pass filtering effect, we should
expect it to reduce the slopes in the fitness function. We
want to verify this, by computing what the average slope
in an arbitrary direction would be after the application of
crossover.

We know (e.g., by applying the exact schema theorem
in [6]) that if we apply one-point crossover with 100%
probability to the population, string frequencies in the next
generation are given by

Φ′(x1x2) = Φ(x1∗)Φ(∗x2). (1)

Here ∗ is interpreted as a don’t care symbol so Φ(x1∗) =
Φ(x10) + Φ(x11) and Φ(∗x2) = Φ(0x2) + Φ(1x2). The
average slope in the direction x2 after the application of
crossover, then, is given by

1

2

`
|Φ′(11) − Φ′(10)| + |Φ′(01) − Φ′(00)|

´

=
1

2
(|Φ(1∗)Φ(∗1) − Φ(1∗)Φ(∗0)|

+ |Φ(0∗)Φ(∗1) − Φ(0∗)Φ(∗0)|)

=
1

2
(Φ(1∗)|Φ(∗1) − Φ(∗0)| + Φ(0∗)|Φ(∗1) − Φ(∗0)|)

=
1

2
|Φ(∗1) − Φ(∗0)|

=
1

2
|Φ(11) − Φ(10) + Φ(01) − Φ(00)|

≤
1

2
(|Φ(11) − Φ(10)| + |Φ(01) − Φ(00)|) (2)
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So, crossover either leaves derivatives of the population dis-
tribution unaltered or (if they have different sign) it reduces
them, effectively producing a smoothing action. The same
type of result can be proven to hold for the direction x1 and
also for longer strings (as we will show below).

To see how this gives us an indication of what the land-
scape looks like when seen through the crossover’s looking
glass, let us imagine that we start our algorithm with all
strings having equal proportions, that is Φ(x) = 1

2` , where `
is string length. If we then apply proportional selection to the
population, we obtain a new distribution Φ(x) = 1

2` f(x)/f̄ .
That is, after proportional selection, string frequencies follow
the profile of the string fitnesses. If we then apply crossover,
we obtain the distribution Φ′(x) given by Equation 1.

Naturally, we can interpret Φ′(x) as the result of applying
selection only to a population exploring a modified fitness
landscape feff(x). This is called effective fitness in the litera-
ture [4], [5]. Because we started with a uniform distribution
Φ(x) we must have that Φ′(x) is proportional to feff(x). We
also know that Φ(x) is proportional to f(x). So, thanks to
Equation 2, we can now see that

1

2
(|feff(11) − feff(10)| + |feff(01) − feff(00)|)

≤
1

2
(|f(11) − f(10)| + |f(01)− f(00)|) . (3)

So, the algorithm behaves as if exploring of a smoothed
version of the original landscape. This is generally true as
shown by the following:

Theorem 1: Under the assumption of infinite populations,
the application of any type of homologous recombination
on a distribution of individuals Φ(x) where x ∈ {0, 1}`,
produces a new distribution Φ′(x) such that ∀i

X

|Φ′(b1 · · · bi−1 1 bi+1 · · · b`) − Φ′(b1 · · · bi−1 0 bi+1 · · · b`)| ≤
X

|Φ(b1 · · · bi−1 1 bi+1 · · · b`) − Φ(b1 · · · bi−1 0 bi+1 · · · b`)|

where sums are over the indices b1, · · · , bi−1, bi+1, · · · , b`.
Proof: In these conditions the exact schema theorem

gives us

Φ′(x) =
∑

m∈M

pc(m)Φ(Γ(x, m))Φ(Γ(x, m̄))

where M = {0, 1}` is the set of all possible crossover masks,
pc(m) is the recombination distribution (the probability of
choosing crossover mask m) for the crossover operator,
Γ(x, m) is a function that given a string (or schema) x returns
a schema where the elements of x corresponding to 0’s in m
are replaced by *’s (don’t care symbols), and m̄ is the bitwise
complement of m. We will use this result in the following.

For notational convenience, we divide M into M0 and
M1, which contain all the crossover masks with the i-th
bit set to 0 and 1, respectively. Also, for each crossover
mask m we divide the set of summation variables b =
{b1, · · · , bi−1, bi+1, · · · , b`} into two: b(m) = {bj |j 6=
i ∧ mj = 1} and b̄(m) = {bj |j 6= i ∧ mj = 0}.

Finally, we define β1
i = b1 · · · bi−1 1 bi+1 · · · b` and β0

i =
b1 · · · bi−1 0 bi+1 · · · b`.

Let us calculate the sum of the magnitudes of the differ-
ences in proportions Φ(x) along a particular direction i:

P

b
|Φ′(β1

i ) − Φ′(β0
i )| =

P

b
|
P

m∈M
pc(m)

`
Φ(Γ(β1

i , m))Φ(Γ(β1
i , m̄))−

Φ(Γ(β0
i , m))Φ(Γ(β0

i , m̄))
´
| =

P

b
|
P

m∈M0
pc(m)Φ(Γ(β1

i , m))×
`
Φ(Γ(β1

i , m̄)) − Φ(Γ(β0
i , m̄))

´
+

P

m∈M1
pc(m)Φ(Γ(β1

i , m̄))×
`
Φ(Γ(β1

i , m)) − Φ(Γ(β0
i , m))

´
| ≤

P

b

P

m∈M0
pc(m)Φ(Γ(β1

i , m))×

|Φ(Γ(β1
i , m̄)) − Φ(Γ(β0

i , m̄))|+
P

b

P

m∈M1
pc(m)Φ(Γ(β1

i , m̄))×

|Φ(Γ(β1
i , m)) − Φ(Γ(β0

i , m))| =
P

m∈M0
pc(m)×
P

b̄(m) |Φ(Γ(β1
i , m̄)) − Φ(Γ(β0

i , m̄))|×
X

b(m)

Φ(Γ(β1
i , m))

| {z }

=1

+

P

m∈M1
pc(m)×
P

b(m) |Φ(Γ(β1
i , m)) − Φ(Γ(β0

i , m))|×
X

b̄(m)

Φ(Γ(β1
i , m̄))

| {z }

=1

=

P

m∈M0
pc(m)×
P

b̄(m) |Φ(Γ(β1
i , m̄)) − Φ(Γ(β0

i , m̄))|+
P

m∈M1
pc(m)×
P

b(m) |Φ(Γ(β1
i , m)) − Φ(Γ(β0

i , m))| =
P

m∈M0
pc(m)×

P

b̄(m) |
P

b(m)

“

Φ(β1
i ) − Φ(β0

i )
”

|+
P

m∈M1
pc(m)×

P

b(m) |
P

b̄(m)

“

Φ(β1
i ) − Φ(β0

i )
”

| ≤
P

m∈M0
pc(m)

P

b̄(m)

P

b(m) |Φ(β1
i ) − Φ(β0

i )|+
P

m∈M1
pc(m)

P

b(m)

P

b̄(m) |Φ(β1
i ) − Φ(β0

i )| =
P

b

P

m∈M
pc(m)|Φ(β1

i ) − Φ(β0
i )| =

P

b
|Φ(β1

i ) − Φ(β0
i )|

V. HOW GAS REALLY WORK

Based on the results of the previous sections we are now
in a position to provide some new intuitions on how genetic
algorithms perform their search.
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Initially, if the population is spread over a large region,
the GA will perform low-pass filtering at very low cut-
off frequency. So, only major, low-frequency features of
the landscape can be perceived. The GA will, for example,
look for broad areas where the average fitness is high.
As the population starts converging the landscape starts
refocusing. This is the result of the fact that homologous
crossover can only explore the now-much-smaller convex
hull of the population. The GA can now perform a finer
optimisation within that region. Finally, when the population
is very converged, the cut-off frequency is very high and, so,
crossover becomes an all-pass filter, thereby revealing all of
the structure of the fitness function, although limited to the
region currently being explored.

From this qualitative description it seems obvious that a
GA with intense crossover can easily be deceived in the early
phases of runs. If the global optimum is in a region domi-
nated by high frequency components, the GA will initially
be unable to perceive that part of the landscape correctly. So,
if the low-frequency components of the landscape induce the
algorithm to move the search in an area not containing the
global optimum, the algorithm will never find it, being unable
to undo its incorrect early decisions.

Naturally, there are crossover operators that can search
outside the convex hull. For example, extended intermediate
recombination [3] can do so. We should expect, however, the
argument provided above to apply to such operators too, as
long as the extrapolate much less often than they interpolate.

VI. THE ONEMIX PROBLEM CLASS

As a further test for our theoretical and qualitative ex-
planations, we decided to design and test a fitness function
having exactly these features.

The function is a mixture of the OneMax problem and a
ZeroMax problem. Like these it is a function of unitation, u,
which represents the number of 1s in a string. For unitation
values bigger than `/2 our new function is just OneMax. For
lower unitation values, it is OneMax if u is odd, a scaled
version of ZeroMax, otherwise. The new function, which we
call OneMix, is formally defined as

f(u) =











(1 + a)(`/2− u) + `/2 if u is even
and u < `/2

u otherwise,

where a > 0. With this constraint we ensure that the global
optimum is the string 00 · · ·0.

Figure 5 shows the OneMix function for ` = 100 and a =
0.6, i.e., the fitness of the global optimum is 1.3` while the
fitness of the deceptive attractor is `. Note the high-frequency
components in the area containing the global optimum. Also,
note that the average (low-pass filtered) fitness in that area is
lower than in the basin of attraction of the deceptive attractor
11 · · ·1.

In order to assess the behaviour of a GA on this class of
functions, we performed a number of both simulations and
empirical runs. These are described in the following sections.
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VII. EVOLVED KERNELS FOR ONEMIX

To test whether it is possible to model the behaviour of
a GA solving the OneMix problem as a single hill-climber
searching a modified (low-pass filtered) landscape, we used
again the technique presented in [2] and briefly summarised
in Section III. That is we used genetic programming to evolve
kernels such that a gradient-based hill-climber could track the
center of mass of the GA as closely as possible.

We considered two settings: a GA with 1/` mutation and a
GA with uniform crossover. In both cases the population size
was 1000, string length was ` = 200 and we used tournament
selection with tournament size 2. The genetic algorithm was a
steady state GA using negative tournaments for replacement.
We ran both algorithms for 40 generations and starting from
5 different (random) initial conditions. Figure 6 shows a
plot of the OneMix function (for ` = 200 and a = 0.6),
together with the low-pass filtered version of it evolved by
GP. As shown in this figure and also in Figure 7, a hill-
climber following the gradient of the evolved landscape is
able to track the center of mass of the GA population very
closely for about 15 generations, failing only when the GA
population loses diversity. The differential of the evolved
kernel is expression u

11+u
.

For comparison, Figure 8 shows a run of a GA without
crossover (but with 1/` mutation) with the corresponding tra-
jectory of a hill-climber following the gradients of an evolved
landscape. Here again we were able to evolve a landscape
such that a hill-climber provides a good approximation of the
behaviour of a GA. Figure 9 shows the evolved kernel and
the result of convolving it with the OneMix landscape. The
differential of the evolved kernel is expression u

0.1448×u2−20
.

VIII. INFINITE POPULATION MODEL

Normally exact probabilistic models of genetic algorithms
are huge, due to the number of degrees of freedom implied
in even small populations and short bit strings. However, for
fitness functions of unitation and GAs that use mutation and
uniform crossover, a more manageable infinite population
model has been developed in [9]. This model assumes
that all strings in each unitation class are equally likely.
This condition will be met by a random initial (infinite)
population. The model model also requires the assumption
that the infinite population model trajectory converges to a
fixed point where strings in each unitation class are equally
likely. The model describes how the distribution of strings in
each unitation class varies from one generation to the next.
By iterating the transition matrices of the model, one can
then obtain the exact time evolution of behaviour for the GA
(under the assumption of infinite population) for relatively
large string lengths and numbers of generations.

To study the behaviour of a GA on the OneMix function
(with a = 0.6), we used an infinite-population unitation
model with strings of length ` = 50 and truncation selection,
with truncation fraction 1/6 (i.e., only the best 1/6 of the
population was saved). After selection we used either uni-
form crossover (applied with 100% probability) or standard
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Fig. 7. One typical run of a GA with uniform crossover on the OneMix
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the OneMix function together with the trajectory of the hill-climber.
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Fig. 9. Plot of the OneMix function (` = 200, a = 0.6), together with the
low-pass filtered version of it seen by a single gradient-based hill-climber
behaving like a GA with mutation (no crossover). The center of mass of
the GA population and the trajectory of the hill-climber are also shown.

mutation with mutation rate 1/`. (The same results could
have been obtained by averaging GA runs with very large
populations.)

In the simulations with uniform crossover with rate 1,
the population went right (to the smooth side), while with
mutation only it went left (to the zigzag side) of the OneMix
function. This is exactly what we predicted previously.

What is perhaps even more interesting are plots of the
population after one round of truncation selection, after trun-
cation selection and crossover, and after truncation selection
and mutation. These are shown in Figure 10. As one can
see, selection tries to amplify high-frequency components
(particularly peaks) in the fitness function, while both mu-
tation and crossover have a smoothing effect. However, the
smoothing effect of crossover is much stronger and is such
to completely mask the high-fitness points on the left of the
unitation landscape.
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Fig. 10. Distribution of unitation after truncation selection both alone and
followed by either crossover or mutation.

IX. EMPIRICAL GA RUNS WITH ONE-MIX

To provide a final corroboration to the infinite population
model results and to our theoretical results on the low-pass
filtering behaviour of crossover, we performed a series of
empirical runs with a variety of different GAs, different
values of `, and different operators and probabilities of
applications of the operators.

Starting with the case ` = 6, fitness proportionate selec-
tion, uniform crossover, random initialisation, and a = 0.6,
Figure 11 shows that with a low crossover rate, in 1000
independent runs, 25% of the populations converged to the
optimal string 000000, while only about 18% converged
to the deceptive attractor 111111. The remaining runs con-
verged to other strings, due to the small population and the
absence of mutation. The effect is greatly amplified if one
uses larger populations, as shown in Figure 12.

The situation is completely different if the crossover rate
in increased to pc = 1.0, as shown in Figures 13 and 14.

Both of the above results are in substantial agreement
with the infinite population model. In fact, in both cases,
the uniform population consisting of copies of the 000000
string and the uniform population consisting of copies of
the 111111 string are stable fixed points of the infinite
population model1. In the first case with the lower crossover
rate, an infinite population corresponding to a random initial
population is close to the boundary between the basin of
attraction of these fixed points. In the second case with a
higher crossover rate, this initial population is in the basin
of attraction of the uniform population consisting of copies
of the 111111 string.

The same qualitative behaviour was obtained in runs with
` = 200 and tournament (with tournament size 6), two-point
crossover (applied with 100% probability) and mutation with
a mutation rate of 1/`, as illustrated in Figure 15. Note that
if crossover is absent mutation always searches the region
of the global optimum reaching it most of the times. In the
presence of crossover, however, the algorithm finds the global
optimum only in about 1/3 of the runs, converging to the
deceptive attractor in all other runs.

X. CONCLUSIONS

GAs and other population-based algorithms integrate the
information provided by individuals. As a result they can
be thought as a single, macroscopic individual moving on a
deformed (smoothed) landscape.

In this paper, we have shown this empirically and started
to build a theoretical basis for the low-pass behaviour of
genetic algorithms with strong crossover.

The interpretation of crossover as low-pass filtering has al-
lowed us to create new, simple but non-contrived landscapes,
the family of OneMix functions, where crossover does not
help and for which we understand why.

1The stability of these fixed points can be determined exactly as shown
in [7]. In fact, the spectrum of the differential can be computed without
iterating the model.
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Fig. 11. Behaviour of a GA on a OneMix problem of length ` = 6, with
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M = 12 (no mutation). Averages of 1000 runs.
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Fig. 12. Like Figure 11 but for population size M = 64.
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Fig. 13. Like Figure 11 but for crossover probability pc = 1.0.
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Fig. 14. Like Figure 12 but for crossover probability pc = 1.0.
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Naturally, we could use these ideas to develop landscapes
where crossover would do very well. This will be the subject
of future research.
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