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Abstract. Sub-machine-code GP (SMCGP) is a technique to speed up
genetic programming (GP) and to extend its scope based on the idea
of exploiting the internal parallelism of sequential CPUs. In previous
work [20] we have shown examples of applications of this technique to
the evolution of parallel programs and to the parallel evaluation of 32 or
64 fitness cases per program execution in Boolean classification problems.
After recalling the basic features of SMCGP, in this paper we first apply
this technique to the problem of evolving parallel binary multipliers.
Then we describe how SMCGP can be extended to process multiple
fitness cases per program execution in continuous symbolic regression
problems where inputs and outputs are real-valued numbers, reporting
experimental results on a quartic polynomial approximation task.

1 Introduction

Genetic Programming (GP) [8,9, 2] is usually quite demanding from the compu-
tation load and memory use point of view. So, over the years a number of ideas
on how to improve GP performance have been proposed in the literature.

For example, Singleton [22] proposed a GP implementation in C++ which
was several times faster than equivalent Lisp implementations. Handley [6] pro-
posed storing a population of trees as a single directed acyclic graph obtaining
considerable savings of memory and computation. Nordin proposed evolving pro-
grams in machine code form [13,16,14,15], a technique which is claimed to be
at least one order of magnitude faster than GP system based on higher-level
languages. Other researchers (see for example [4]) have proposed to compile
at runtime standard GP trees into machine code before evaluation. Speed up
strategies based on intelligently reducing the number of fitness cases have been
proposed [5,24,11]. Finally, some research has been devoted to parallel and dis-
tributed implementations of GP (see for example [1,23,7]).

Some of these techniques are now used in many GP implementations. This
and the increased power of modern workstations make it possible run 50 gener-
ations of a typical GP benchmark problem with a population of 500 individuals



in perhaps ten seconds on a normal workstation. Nonetheless, the demand for
more and more efficient implementations has not stopped.

Most computer users consider their machines as sequential computers. How-
ever, at a lower level of abstraction CPUs are really made up of parallel com-
ponents. In this sense CPUs can be seen as Single Instruction Multiple Data
(SIMD) processors. Sub-machine-code GP (SMCGP) is a method to exploit this
form of parallelism to improve the efficiency and the range of applications of
genetic programming [20]. SMCGP extends the scope of GP to the evolution of
parallel programs running on sequential computers. These programs are faster
since, thanks to the parallelism of the CPU, they perform multiple calculations
in parallel during a single program evaluation. SMCGP is more efficient since, in
some domains, it allows the evaluation of multiple fitness cases per program exe-
cution. In [20] we showed that on Boolean classification problems nearly 2 orders
of magnitude speedups can be achieved. In this paper we apply SMCGP to the
problem of evolving parallel binary multipliers and extend SMCGP to process
multiple fitness cases per program execution in continuous symbolic regression
problems where inputs and outputs are real-valued numbers.

The paper is organised as follows. In Section 2 we describe the basic princi-
ples behind SMCGP and we provide examples on how the technique can be used
to evaluate multiple fitness cases per program execution in Boolean classification
problems and to evolve parallel programs which exploit the CPU’s internal par-
allelism. In Section 3 we describe a new application of SMCGP to the evolution
of parallel 2-bit multipliers. In Section 4, we describe how sub-machine-code GP
can be extended to allow the parallel evaluation of multiple fitness cases in con-
tinuous symbolic regression problems. In the same section we report the results
of the application of this SMCGP extension to a quartic polynomial approxi-
mation task. We discuss the advantages and disadvantage of SMCGP and draw
some conclusions in Section 5.

2 Sub-machine-code GP

In a CPU some instructions are performed in parallel and independently for all
the bits in the operands. For example, if the operands are two words containing
the integers 193 (binary 00000000000000000000000011000001, assuming a 32-bit
CPU) and 252 (binary 00000000000000000000000011111100), a bitwise AND
operation on a modern CPU will produce a word containing the integer 192
(binary 00000000000000000000000011000000) in a single clock tick. The CPU
will perform the operation by concurrently activating 32 different AND gates
within as many slices of the arithmetic logic unit. So, logically in this operation
the CPU can be seen as a SIMD processor made up of 32 1-bit processors.
In other instructions the CPU’s 1-bit processors can be imagined to interact
through communication channels; in shift operation, for example, where each
processor sends data to one of its neighbours. Some operations in the CPU
are executed simultaneously by all 1-bit processors. Those requiring interaction
between the 1-bit processors may require multiple clock ticks. Nonetheless, as



far as the user is concerned the CPU’s 1-bit processors run in parallel, since the
results of the operation of all processors become available at the same time.

All this powerful parallelism inside our CPUs has been ignored by most of
the GP community so far, perhaps because many of us are not used to think in
term of bits, nibbles, carries, registers, etc. The most notable exception to this
is the work of Peter Nordin [13,16, 14, 15] which exploits the CPU is its entirety
in some problems (for example, in [13] complete Swedish words were coded into
32 bit integers which were processed in parallel for classification purposes).

Sub-machine-code GP exploits the CPU’s internal parallelism to obtain faster
and more expressive forms of GP. This is obtained as follows:

— The function set includes operations which exploit the parallelism of the
CPU, e.g. bitwise Boolean operations, shift operations, etc.

— The terminal set includes integer input variables and constants. These
are interpreted as bit vectors where each bit represents the input to a
different 1-bit processor. For example, the integer constant 192 (binary
00000000000000000000000011000000) is seen as a 1 by the 1-bit processors
acting on bits 7 and 8. It is seen as a 0 by all other 1-bit processors.

— The integer result produced by the evaluation of a program is interpreted as
a bit vector. Each bit of this vector represents the result of a different 1-bit
processor.

Since most programming languages include operations which use directly the cor-
responding machine code operations, it is possible to exploit the parallel nature
of the CPU in most languages. This means that any GP system can potentially
be used to do sub-machine code GP.

An ideal application for SMCGP is to evaluate multiple fitness cases in par-
allel. Boolean induction problems lend themselves naturally to this use of sub-
machine-code GP, leading to 1.5 to 1.8 orders of magnitude speedups (for 32
and 64 bit machines, respectively). We explored this idea in detail in [20]. In the
following subsection we recall the main points.

2.1 Simultaneous Evaluation of Multiple Boolean Fitness Cases

In Boolean classification problems sub-machine-code GP can be used to evaluate
multiple fitness cases in parallel. The approach is as follows: a) bitwise Boolean
functions are used, b) before each program execution the input variables need
to initialised so as to pass a different fitness case to each of the different 1-
bit processors of the CPU, ¢) the output integers produced by a program are
converted into binary form and each of their bits is interpreted as the output for
a different fitness case.

For example, let us assume that we want to evolve a program implementing
the XOR function. The truth table of this function is:



x1 x2 | x1 XOR x2
00 0
10 1
01 1
11 0

Let us further assume that we are using a function set including bitwise AND,
OR, and NOT, a terminal set {x1,x2}, and a fitness function which measures
the number of bits in the rightmost column of the truth table correctly classified
by each program. Then we can evaluate the fitness of a program in one program
execution by loading the values 5 (binary 0101) into x1 and 3 (binary 0011) into
x2 and then executing the program. The values assigned to the terminals are
integers obtained by converting into decimal the corresponding bit columns of the
truth table. The value returned by the program represents the program’s attempt
to fit the rightmost bit column in the truth table. So, by measuring the Hamming
distance between the two, we obtain a program’s fitness. For example, if we run
the program (AND (NOT x1) (OR x1 x2)), it first performs the bitwise negation
of x1, obtaining 10 (binary 1010), then it computes the bitwise disjunction of
x1 and x2, obtaining 7 (binary 0111). Finally the two results are conjoined
obtaining 3 (binary 0010). If we compare (bitwise) this number with the desired
output, 6, representing the binary number in the rightmost column in the truth
table (0110), the comparison indicates that the program (AND (NOT x1) (OR x1
x2)) has a fitness of 3. This is obtained with only one execution of the program.

In general using SMCGP all the fitness cases associated to the problem of
inducing a Boolean function of n arguments can be evaluated with a single
program execution for n < 5 on 32 bit machines, and n < 6 on 64 bit machines.
For bigger values of n the 2™ fitness cases can be evaluated in blocks of 32 or
64 [20, appendix]. Since this can be done with almost any programming language,
this technique can lead to 1.5 to 1.8 orders of magnitude speedups.

Because of the overheads associated to the packing of the bits to be as-
signed to the input variables and the unpacking of the result the speedup factors
achieved in practice are to be expected to be slightly lower than 32 or 64. How-
ever, these overheads can be very small. Indeed in [20] we reported speedups of
31 times for a 32-bit machine. More recently running a C SMCGP implementa-
tion on a 64-bit 400MHz machine we have measured an average evaluation time
per fitness case of 1.37us, corresponding to 1.3 primitives per CPU cycle!

2.2 Evolution of Parallel Programs for the CPU

The CPU 1-bit processors must always execute the same program. Nonetheless it
is still possible for them to perform different computations. This can be achieved
by passing constants with different bits set to different processors.

For example, let us consider a 2-bit CPU which is computing a bitwise AND
between a variable x and the constant 2 (binary 10), and suppose that x is either
0 (binary 00) or 3 (binary 11). In these conditions, the first 1-bit processor will
perform (AND x 1) and will therefore return a copy the first bit in x, i.e. it will



compute the identity function. The second 1-bit processor will instead compute
(AND x 0) which is always false, so it will return the constant 0 whatever the
value of the second bit in x.

This idea can be exploited to evolve parallel programs for the CPU using
SMCGP. To do so it is sufficient to: a) use bitwise operations in the function
set, b) use a range of constants in the terminal set which can excite differently
different 1-bit processors in the CPU, ¢) use variables in the terminal set whose
bits are either all 0 or all 1, d) unpack the output. Note that this approach is the
exact dual of the one used in the parallel evaluation of fitness cases described in
the previous subsection. Here we use different bit configurations for the constants
and identical bit configurations for the variables (i.e. variables can only take the
binary values 000....0 or 111....1). There we did the opposite.

In [20] we applied sub-machine-code GP to the problems of evolving parallel
programs implementing 1-bit and 2-bit adders with and without carry. We also
used SMCGP to evolve parallel character recognition programs. In the next
section we will demonstrate the idea on another problem: the evolution of parallel
2-bit multipliers.

3 Evolution of Parallel 2-bit Multipliers

A 2-bit multiplier has four inputs: x1 and x2 which represent the least significant
bit and the most significant bit of the first operand, respectively, and x3 and x4
which represent the second operand. The multiplier has four outputs, rl, r2, r3
and r4, which represent the result of the multiplication. The truth table for a
2-bit multiplier is the following:

x1x2x3x4 | r1r2r3r4d
0000 0000
1 000 0000
0100 0000
1100 0000
0010 0000
1 010 1 000
0110 0100
1 110 1100
0 001 0000
1 001 0100
0101 0010
1101 0110
0011 0000
1 011 1100
0111 0110
1111 1 001

By exploiting the parallelism in the CPU it is possible to compute r1, r2,
r3 and r4 simultaneously. This can be done by slicing the output of a single



program into its component bits and interpreting the first four of them as r1,
r2, r3 and r4. Of course to do this it is necessary to include in the program
appropriate constants which can excite differently different parallel components
of the CPU.

Solving the multiplier problem by hand would already be difficult if one
could use four separate program trees to compute ri, r2, r3 and r4. However,
designing a parallel program to do that would be really challenging. Fortunately,
this can easily be done by evolution using sub-machine-code GP.

To do that we used the function set {AND, OR, NOT, XOR}, where all func-
tions were implemented using bitwise operations on integers. This problem has
four outputs and so requires using four 1-bit processors within the CPU. The
terminal set was {x1, x2, x3, x4, R}, where x1 and x2 represent the first
operand, and x3 and x4 represent the second operand. The terminal R is a ran-
dom constant generator which creates integer constants in the set {0,1,...,15}.
These constants allow GP to modify selectively the behaviour of different parts
of the program for different 1-bit processors. The variables x1, x2, x3 and x4
took the values 0 (binary 0000) and 15 (binary 1111) depending on whether the
corresponding bits of the 2-bit multiplier truth table were 0 or 1. This was done
to provide the same inputs to the first four 1-bit processors of the CPU. The
fitness function was the sum (over all the 16 possible combinations of inputs) of
the normalised weighted sum (over all the 4 outputs) of the absolute difference
between the actual output and the desired output, i.e.

4 o(i-1)
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where y1, y2, y3 and y4 are the first four bits of the integer produced by the
evaluation of a program and r1, r2, r3 and r4 are the desired outputs (for fitness
case fc). To promote parsimonious solutions this fitness was decreased by 0.001
times the number of nodes in a program. Except for the fitness function, no
change of our standard-GP system was necessary to run sub-machine-code GP.

In our runs we used a population of 1000 individuals, 500 generations, stan-
dard subtree crossover (with uniform probability of selection of the crossover
points) with crossover probability 0.9, point mutation [18,19] with a probability
of 0.03 per node, and tournament selection with tournament size 7. The random
initialisation of the population was performed so as to obtain a uniform distri-
bution of program sizes between 1 and 40 nodes. Runs were not stopped when
a solution was found, allowing GP to discover additional, more parsimonious
solutions.

We performed 50 independent runs with these parameters. Of these, 32 were
successful. The computational effort to obtain a solution with 99% probability in
repeated runs was 2,088,000 fitness evaluations. The average generation at which
the first solutions were found was 275. The average structural complexity of the
first solutions found was 83.7 nodes. However, by generation 500 the average size
of the solutions was 36.0, with structural complexities ranging between 21 and
55 nodes.



For example, in one run a solution was found by GP at generation 298. The
solution included 105 nodes. By allowing the run to continue, by generation 477
GP had simplified this solutions down to 32 nodes. The simplified solution is
shown in Figure 1. As far as the bit-1 processor of the CPU (the one which com-

Fig.1. A program evolved using sub-machine-code GP to solve the 2-bit multiplier
problem.

putes r1) is concerned this program is equivalent to the one shown if Figure 2(a).
This version of the program has been obtained by replacing all the constants in
Figure 1 with bit 1 in the corresponding binary representation (e.g. 13 (binary
1101) is replaced with 1, 12 (binary 1100) with 0), and simplifying the resulting
program tree. The programs “seen” by the other three 1-bit processors, shown in
Figures 2(b)—(d), have been obtained in a similar fashion substituting constants
with their 2nd, 3rd and 4th bits, respectively.
The two smallest solutions found by SMCGP were

(AND (OR x4 3) (XOR (AND (OR x2 1) (XOR 4 (AND (OR 2 x1) x3)))
(AND x4 (AND x1 2))))

and

(AND (XOR (AND (OR 1 x2) (XOR 4 (AND x3 (OR x1 2))))
(AND (AND 2 x1) x4)) (OR 3 x4))



Fig. 2. Programs seen by different 1-bit processors in the CPU when executing the
program in Figure 1.

These include 21 nodes, but only 10 gates each, which compares favourably with
results reported in recent evolvable hardware literature [12, 3].

4 Evaluation of multiple fitness cases in continuous
symbolic regression problems

In Section 2 we have seen how SMCGP can be used to evaluate multiple fitness
cases in parallel in Boolean classification problems, by feeding each fitness case
into a different 1-bit processor of the CPU. This is possible because in such
problems the input variables can only take two values, either 0 or 1, and each
operation in the function set does not require more than one 1-bit processor to
be performed. In continuous symbolic regression problems, where the input vari-
ables and the program output can take a wide range of values, this is certainly
not the case. If, for example, we wanted to evolve a function that fits the data
points (-1.0,1.0), (-0.9,0.81), ...(1.0,1.0), obtained by sampling the polynomial
y = 22, using a function set {x,+,/,-}, we would normally use floating point



operators and floating point representations for the terminals (e.g. for the vari-
able x and some random constants). Since such operations and representation
require the use of all slices of the CPU, it seems quite difficult to use a form of
SMCGP based on a floating point representation to speed up the evaluation of
programs in continuous symbolic regression problems. However, this can easily
be done using a different representation for reals, the fixed point representation,
which allows SMCGP to parallelise the evaluation of fitness cases in continuous
domains too, although to a more limited extent than in discrete domains and
with some compromises.

4.1 SMCGP with fixed point representations

Fixed point representations are widely used in digital signal processing and have
been used in the GA literature to represent reals within binary chromosomes
(see for example [21]). The basic idea is to discretise the range in which the
variables are allowed to vary and then to represent each possible discrete value
with an integer, by properly offsetting, scaling and truncating/rounding such a
value. For example, if a variable z is allowed to vary in the range [1,10], one
could discretise such a range with a resolution 0.1 transforming it into the set
{1.0,1.1,1.2...,10.0}. Then it would be possible to represent each discrete value
x4 with the integer (24 —1)/0.1. Normally the resolution is selected on the basis
of the number of bits one wants to allocate to represent the integers resulting
from the discretisation/rescaling process. For example, if one wants to represent
the range [a, b] using I-bit integers, the resolution will be set to (b —a)/(2! — 1).

In GAs fixed point numbers are manipulated directly at the binary level
by crossover and mutation. So the only real-valued operation to be performed
on fixed point numbers is their decoding from binary form. However, in signal
processing a whole range of other operations like multiplication, addition, thresh-
olding, etc. are normally performed. All these operations are basically defined
as operations on integers, except that the results are properly scaled so as to
represent the correct fixed point value. For example, if one wants to implement
a multiplication between fixed point numbers in the range [0,1], stored as 8-bit
integers, one can simply compute the product between the two integers and then
divide the result by 256. (In reality things are slightly more complicated since
overflows need to be properly handled.)

Standard GP could use fixed point numbers and operations on them. How-
ever, this would not lead to any performance advantage, since modern CPUs are
able to perform floating point operations at virtually the same speed as integer
ones. (This could still be a useful thing to do if one wanted to evolve digital signal
processing algorithms to be later run on a different architecture.) On the con-
trary, a significant performance advantage can be achieved if one uses SMCGP
in conjunction with a fixed point representation. This is because in most applica-
tions a relatively low resolution is sufficient. Therefore, it is possible to partition
the 1-bit processors in the CPU into several groups, where each group processes
a separate fitness case, in essentially the same way as in Section 2. For example,



if one used 8-bit fixed point numbers on a 64 bit CPU, 8 fitness cases could be
processed in parallel during each program execution.

Naturally there are limitations on what can be done with SMCGP in con-
tinuous domains. In fact, while there are operations, like addition on 32/64
bit integers, that are (nearly) decomposable into many smaller-scale (say 8-bit)
operations performed in parallel, other operations, like multiplication, are not.
The former kind of operations can be used freely in SMCGP with fixed point
numbers, since their effect is nearly equivalent to performing several fixed-point
operations sequentially and then assembling the result into a 32/64-bit word.
The latter kind of operations cannot instead be used. This does not mean that
one cannot use multiplications in SMCGP, but simply that multiplications will
have to be performed sequentially. If other operations in the function set can be
parallelised, the net effect of having some sequential operations can be relatively
small.!

Other limitations are indirectly due to the features of fixed point represen-
tations. Fixed point representation with a small number of bits may be very
efficient in terms of memory and effort to perform calculations. This is even
more true in SMCGP with fixed point representations, since the number of fixed
point calculations per node evaluation is inversely proportional to the number
of bits used to represent fixed point numbers (when multiple calculations can
be performed in parallel). However, using a small number of bits leads to in-
accuracies of various kinds (limited resolution, underflow) which can only be
reduced by increasing the number of bits used. So, in SMCGP with fixed point
representations, there is a tradeoff between accuracy and speed.

We have explored these ideas in a set of experiments with a continuous sym-
bolic regression problem: the problem of inducing a function that best fits a
set of datapoints obtained by sampling a quartic polynomial. The experimental
setup is described in the next section.

4.2 Quartic Polynomial Problem

The problem used in our experiments consisted in evolving a function from a set
of (x;,v;) pairs obtained by sampling the polynomial y(z) = z* +2® + 22 +2+6
for z € [—1,1]. In the experiments we used 48 equally spaced fitness cases with
z;=—1+ 2% -iand y; = y(z;) for i = 0,...,47.

We used a resolution of 8 bits to represent fixed point numbers and fixed
point operations. This allowed us to divide the 64-bit CPU’s 1-bit processors
into 8 groups of 8, and, therefore, to process 8 fitness cases per program eval-
uation. The range in which the fixed point numbers were allowed to vary was

! Some CPUs have instructions which allow the execution of multiple integer opera-
tions on multiple data in parallel which eliminate the problem just mentioned. For
example, the MMX technology of Intel CPUs allows one to partition 64-bit regis-
ters into multiple blocks of 8, 16 or 32 bits and to perform integer arithmetics on
all the blocks in parallel and independently. MMX instructions can also take care
of the overflows by using saturating arithmetics. However, since these features are
architecture dependent, we have decided to ignore them in this work.



[0,10] which gives a resolution of approximately 0.04. The terminal set was {X,
Cc1, C2, C3, C4, C5, C6, C7, C8}, where X is the fixed point representation
of the input variable z (to which an appropriate constant was added to trans-
form it into a positive number), and Ci’s are fixed point constants represented
by the following binary numbers: 00000001 (C1), 00000010 (C2), 00000100 (C3),
00001000 (c4), 00010000 (C5), 00100000 (C6), 01000000 (C7) and 10000000 (C8).
The function set was {MUL, DIV, PLUS, MINUS}, where each operation is im-
plemented to approxzimate multiplication, division, addition and subtraction of
fixed point numbers, respectively. A C implementation of these operations for
a 64 bit CPU is shown in Figure 3 (see [20, appendix] for a larger fragment of
SMCGP code).

In the code the function run() is a simple recursive interpreter capable of
handling terminals and four algebraic operations. The interpreter executes the
program stored in prefix notation as a vector of bytes in the global variable
program. The interpreter returns an unsigned long integer which is used for
fitness evaluation. The terminal set is stored in an array of 64-bit integers (t[]).
The first element of the array represents the variable X, which is set appropriately
by the fitness function before calling run(). The other elements of t[] represent
the fixed point constants Ci’s.

The PLUS and MINUS operations are only approximately correct for two rea-
sons. Firstly, the operations are performed without any overflow /underflow error
checking, assuming arguments and results within the range [0,10]. Since the op-
erations are performed as unsigned integer operations, this means that if one
subtracts a positive number (say 5) from a slightly smaller positive number (e.g.
4.9), the result may be a large positive number (9.9) instead of the expected
small negative number (-0.1). Also, if one adds two relatively large numbers, like
6 and 5, the result may be a small number (1), instead of the expected large one
(11). Secondly, the operations are approximate because they are implemented so
that 8 of them can be performed in parallel by different groups 1-bit processors.
This requires ignoring (zeroing) the possible carries coming from other groups
of 1-bit processors.

As indicated in the previous section multiplication and division operations
cannot be performed in parallel by all the groups of 1-bit processors. For this
reason, MUL and DIV are implemented as several fixed-point operations performed
sequentially.

In the quartic polynomial problem, the interpreter (the function run()) is
invoked by the fitness evaluator 6 times, i.e. once to evaluate fitness cases i =
0,...7, once for fitness cases i = 8, ..., 15, etc. Before run() is invoked, the 8-bit
fixed point representations of the x coordinates of 8 fitness cases are properly
packed into a 64 bit integer which is stored in t[0]. Also, the program counter
(program) is properly reset. The value returned by run() is decoded/unpacked
into 8 8-bit fixed point numbers. The absolute differences between them and
the y coordinates of the corresponding fitness cases are accumulated over the 6
calls of the interpreter and then divided by the number of fitness cases (48) to



obtain the average program error. This is then subtracted from 10 (the maximum
possible error) to obtain a fitness value.

In our runs we used the following parameters: population size 1,000 and
100,000 individuals, 50 generations, steady state GA, 50% of the individuals
underwent subtree crossover, 50% underwent point mutation (with a mutation
probability of 0.05 per node) [18,19], tournament selection with tournament size
20, “grow” initialisation method with maximum initial depth of 3. We performed
50 independent runs with each population size. Runs were not stopped until
generation 50.

During the runs whenever a new best-of-run individual was discovered, this
was tested on a larger set of cases to measure its generalisation power. This was
assessed by measuring the average error on 256 equally spaced values for the
variable z in the interval [-1,1]. Since we use 8-bit fixed point numbers, this is
the biggest set of different fitness cases that can possibly be generated.

4.3 Results

The results of the experiments with populations of 1,000 individuals were mixed.
Runs were extremely fast lasting 4.1 seconds on average, but the quality of the
resulting programs was relatively poor. Indeed, the mean absolute error over
the 48 fitness cases of the best of run programs (averaged over 50 runs) was
above 0.3. The behaviour of an average quality best-of-run program is shown in
Figure 4. Nonetheless, in repeated runs it was possible to discover fairly good
programs. The behaviour of best programs evolved using this population size is
shown in Figure 5.

The results of the experiments with populations of 100,000 individuals in-
stead were quite promising. The mean absolute error over the 48 fitness cases
of the best of run programs (averaged over 50 runs) was below 0.1, and so was
the generalisation (mean absolute error over the 256 generalisation cases) of the
best of run programs. Figure 6 shows the behaviour of the program with the
highest fitness discovered in the 50 runs, while Figure 7 shows the behaviour of
the worst best-of-run program discovered. Considering the low resolution used
to represent fixed point numbers (8 bit) this accuracy is remarkable.

The high generalisation achieved in these runs is probably a result of the rel-
atively high number of fitness cases used, and of the implicit parsimony pressure
created by point mutation with a fixed mutation rate per node [17]. Indeed the
average size of the best-of-run programs was 36.6 nodes.

The 50 runs with a population size of 100,000 took a total of 27,006 seconds
of CPU time to complete on a 400MHz DEC Alpha workstation. So, on average
each run lasted 540 seconds, which corresponds to 10.8 seconds per generation
and 108us per individual. Since each individual was executed 6 times to assess
its fitness, the average program execution time was 18 ps. During each program
execution 8 fitness cases are evaluated, so the average fitness-case evaluation
time is 2.25 us.

Despite the presence of operations which could not be parallelised, SMCGP
showed impressive performance in these experiments. The total number of nodes



TERMINAL SET */
8 different values of X are stored here */
Cl1 is stored here (8 times) */

Cc2
Cc3
c4
C5
Ccé
Cc7
Cc8

unsigned long t[9] = {
0x0000000000000000,
0x0101010101010101,
0x0202020202020202,
0x0404040404040404,
0x0808080808080808,
0x1010101010101010,
0x2020202020202020,
0x4040404040404040,
0x8080808080808080} ; /*

#define mul (bits,mask) \
cl = (argl >> bits) & Oxff; \
c2 = (arg2 >> bits) & Oxff; \
cl *= c2; \
cl >>= SCALE; \
cl &= Oxff; \
argil (argl & mask) |

/%
/*
/%

do axb */
unpack fixed point number a */
unpack fixed point number b */
/* multiply corresp. integers */
/* normalise */
* mask overflow bits */
( c1 << bits); /# replace a with axb */

#define div(bits,mask) \ /*
cl (argl >> bits) & Oxff; \ /*

do a/b */
unpack fixed point number a */

c2 = (arg2 >> bits) & Oxff; \ /*
cl <<= SCALE; \ /*
cl =c27?7cl/ c2: /*
cl &= Oxff; \ /*

cl; \

unpack fixed point number b */
prescale before division */
divide corresp. integers */
mask overflow bits */

argl = (argl & mask) | ( cl << bits); /* replace a with a/b */

unsigned long run() { /* Interpreter */
register unsigned long argl, arg2, cl, c2;
switch ( *program++ ) { /
case PLUS : return( ( run() +
case MINUS : return( ( run() -
case MUL : argl run(); arg2
mul (56 ,0x00fffffFFFFEFEFE) ;
mul (48 ,0xffO0ffEfFFFEFEFE) ;
mul (40,0xf£fFOOffEfFEFEFSE) ;
mul (32,0xfffEFFOOfEEEFEFE) ;
mul (24 ,0xfEffEFEFOOLELEESE) ;
mul (16 ,0xfffFEFEFFFFOOFEFE) ;
mul( 8,0xfffffffFEFFFOO0ES);
mul( O,O0xfffffffffEfFEFf£00) ;
return( argl );
case DIV : argl = run(); arg2
div(56,0x00fffffFfFEFFFFE) ;
div(48,0xffO0fffffffFfFff);
div(40,0xffffOOffffEFFFFf);
div(32,0xfffEfffO0ffEffFFf) ;
div(24,0xfffEffEfFFOOffEFFE) ;
div(16,0xfffEffEfFEFO0LELE) ;
div( 8,0xffffffffffFfO0ff) ;
div( O,0xffffffffEffffF£00);
return( argl );
default: return( t[*(program-1)] );
}

FUNCTION SET
run() ) & Oxfefefefefefefefe );
run() ) & Ox7L7LfTETETETE7E7E );
run();

run();

Fig. 3. 64-bit C implementation of the primitive set used in the quartic polynomial
problem.
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Program Output ----

5 '7777777777177 1 1 1 1 1 1 1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Fig. 4. Behaviour of an average quality best-of-run program evolved using sub-
machine-code GP with populations of size 1,000 to solve the quartic polynomial prob-
lem.

10 T T T T T T T T
9 = -
8 I 1
7+ / g
,W'W ) Quartic Polynomial — o

Program Output ----

5 1 1 1 1 1 1 1 1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Fig. 5. Behaviour of the best best-of-run program evolved using sub-machine-code GP
with populations of size 1,000 to solve the quartic polynomial problem.
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Quartic Polynomial — 4
Program Output ----

5 I I I I I I I I
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Fig. 6. Behaviour of the best program evolved using sub-machine-code GP with pop-
ulations of size 100,000 to solve the quartic polynomial problem.

10 T T T T T T T T
9 = -
8 ]
s i
Quartic Polynomial — 4

Program Output ----

5 1 1 1 1 1 1 1 1

-1 -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8 1

Fig. 7. Behaviour of the worst program evolved using sub-machine-code GP with pop-

ulations of size 100,000 to solve the quartic polynomial problem.



evaluated during the runs was 52,404,275,616. From this we can infer that the
average program size during the runs was 34.9 nodes, and that our GP system
was executing 1.96 x 10% nodes per second, which, thanks to the use of SMCGP,
corresponds to 15.53 x 10° primitives per second. This is a remarkable result, if
one compares this with the performance of other very efficient C/C++ GP im-
plementations. For example, in a number of tests [10, 11] using GP-QUICK [22]
on the same machine on which we ran our experiments, the average primitive
evaluation time was 0.8 us for programs including floating point additions and
multiplications. This corresponds to 1.25 x 10% primitives per second, which is
more than 12 times slower than SMCGP.

5 Conclusions

SMCGP is a technique to exploit the internal parallelism of CPUs in GP. SM-
CGP can work around the SIMD nature of the CPU and evolve efficient parallel
programs which solve multiple problems simultaneously. In this paper we demon-
strated this on the problem of evolving parallel binary multipliers.

However, SMCGP can also be used to compute multiple fitness cases in
parallel during a single execution of a program. In previous work [20] we showed
how this can be done, at zero cost, in Boolean classification problems achieving
speedups of up to 64 times on 64-bit processors. In this paper we have described
how SMCGP can also be extended to process multiple fitness cases per program
execution in continuous symbolic regression problems, indicating the limitations
and tradeoffs inherent to this approach. Despite these, the speedups obtained
with this technique are considerable.

All this can easily be obtained without any substantial change to the basic GP
machinery. The only requirements to do SMCGP are a primitive set designed
to exploit the internal parallelism of the CPU, and a fitness function which
takes care of properly initialising/encoding the input variables and properly
decoding the values returned by the interpreter. All this can easily be done in
any programming language, making it possible to do SMCGP, with only minor
changes, in any pre-existing GP implementation.
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