A Hybrid Rule-based System with Rule-refinement
Mechanisms

Riccardo Poli, Mike Brayshaw and Aaron Sloman

School of Computer Science
The University of Birmingham
Birmingham B15 2TT
United Kingdom
E-mail: {R.Poli,M.C.Brayshaw,A.Sloman }@cs.bham.ac.uk

September 27, 1995

Abstract

In this paper we present HTR, a hybrid trainable rule-based system.
The key features of the system include: the heterogeneous integration
of multiple control regimes, rule induction and refinement mechanisms,
easy and concise specification of knowledge, treatment and support for
uncertainty. All these features are obtained thanks to the introduction
of a new formalism for rule specification that extends the behaviour of
a traditional rule based system. The formalism utilises predicates as
an intermediate layer between the conditions and the actions of rules.
Different kinds of predicates support various sorts of control, distrib-
uted conflict resolution, and learning from examples. In particular we
describe the characteristics of truth-table-based, collection-based and
artificial-neural-net based predicates which are pre-defined in HTR.
We also report on a method for automatic rule induction using ge-
netic algorithms. Experimental results exploiting the afore-mentioned
features are described.

1 Introduction

In symbolic AT the value of the integration of heterogeneous inference meth-
ods is already well understood, e.g. CAKE [9] and KEATS [5]. Therefore,
it seems natural to try and combine standard symbolic inference techniques
with other sub-symbolic or numeric models. One attempt in this direc-
tion has been the implementation of symbol systems using neural networks
(e.g. [11, 14, 7]). This has the advantage of producing massively paral-
lel, fault-tolerant systems that have the functionality typically associated
with symbolic AI. However, in these systems, extensions often require re-
training the nets or changing their topology, so that the symbol systems
implemented may not be readily changeable. Another approach has been
to use different technologies for different parts of the system. In general

a neural network is used for pre-processing tasks, such as pattern recogni-
tion/classification, while a traditional inference system performs the higher-
level tasks, such as reasoning. Schreinmakers [10] provides a good example
of this sort. However, this weak integration of the different technologies does
not allow the exploitation of their joint power within the same module.

Elsewhere, in machine learning, attention has also been turning to hybrid
approaches. Two leading approaches use either empirical learning (learn-
ing from example sets) or domain knowledge, e.g. example-based learning
(EBL) [4], to acquire new knowledge. However, typically empirical learning
does not take into account domain knowledge when learning. Further EBL
techniques require the domain theory to be complete and correct. This has
led to attempts to produce hybrid systems that aim at integrating the two
approaches, by improving existing domain theories using further examples.
EITHER [6] used three different types of inferences to refine incorrect the-
ories. KBANN [15] is a hybrid system that takes nearly complete rulebases,
expressed as Horn clauses, and translates them into initial neural networks.
Subsequently, these networks are further trained using a separate train-
ing set. Although clearly capable of impressive learning performance, the
concepts developed are implicit within the neural representation. Further
conventional cycling rules and variables are not currently supported.

In this paper we present an alternative approach to hybridisation which
allows a more tight and natural integration between symbolic and and
non-symbolic systems. Specifically, we have designed a system called
HTR (Hybrid Trainable Rulebase) which allows useful properties of sub-
symbolic/numeric systems to be integrated with the inference power of sym-
bolic rules. In HTR, concepts and inference are modelled explicitly at the
knowledge level, but other types of inference mechanisms, e.g. artificial
neural networks or conventional or genetically-derived algorithms, can be
used as control regimes over explicit symbolic concepts. Thus, where beha-
viour is best modelled by training a neural network (e.g. because of their
noise tolerance) using a given dataset this can be done, yet within the con-
fines of a conventional rulebased system.

The paper is organised as follows. We first describe an overview of
our system and explain how hybrid reasoning capabilities may be integrated
within a conventional recognise-act cycle. Then, we present four increasingly
powerful techniques for rule induction/hybrid inference: one based on a
truth-table representation, a second one based on a form of example based
learning, a third one based on artificial neural nets and a fourth one based on
genetic algorithms. Next, we report on some experimental results using such
techniques, demonstrating how these ideas have been tried out in several
different domains. Finally, we draw some conclusions.

2 The System

In this section we shall show how HTR extends conventional rule based sys-
tems to include the learning and control techniques present in other inference
technologies. Learning capabilities have obvious potential in knowledge ac-

quisition. However our system also aims to let the knowledge engineer model
explicit knowledge whenever possible, yet be more flexible as to the infer-
ence paradigm applied to this knowledge. A side-effect of this is that large
amounts of knowledge can be expressed in a very succinct way. In the next
sections we will go on to describe how this can be done.

2.1 Knowledge Representation

We are all familiar with a typical if IF <condition 1> AND <condition 2>
AND <condition N> THEN <list of actions> style of rules used
in systems such as [2]. In HTR we have extended this format as follows:

Rule <rule name>:
IF <condition 1>, <condition2>, <condition N>
SATISFY <predicate>
THEN <list of actions>.

Every time IF-SATISFY-THEN (IST) rules of this kind are considered by
the interpreter, the pattern including the truth and falsity values of the con-
ditions plus the variable instantiations associated with the conditions (we
call it the condition-pattern) is used as argument for <predicate>. The pre-
dicate is satisfied if it returns a non-false result. If the predicate is satisfied
(in one of the several ways described below), a corresponding instance of the
rule is placed in the conflict set.

It is worth noting that if <predicate> is the standard AND predicate (or
any more complex combination of AND, OR and NOT), the proposed system
behaves exactly as a classical rule-based system having the same conditions
and actions. However, this syntax allows for the definition of more general
rules, thus leading to a reduction of the number and size of the rules in the
system and to easier maintenance of the knowledge base. Let us consider
some examples.

Let us suppose that <predicate> is the MAJORITY predicate (it is true

if the majority of the conditions are true). Now, we can see that it is not so
simple to write a set of rules equivalent to the rule:

Rule <rule name>:
IF <condition 1>, <condition2>, <condition N>
SATISFY MAJORITY
THEN <list of actions>

If N is small the task may be manageable, but for larger N about 2N—!
conjuncts of the conditions have to be handled making the task quite tedious,
potentially error prone and involves use of several rules with overlapping sets
of conditions, which may impose a significant run time cost. This happens
because the decision on whether the actions have to be performed depends
on properties (the number of true conditions in this case) of the whole set of
conditions, as opposed to the truth or falsity of known logical combinations.
Other examples of this kind of rule-control regimes include even and odd
parity, all-but-one, and multiplexing. Other situations in which the proposed
rule format can be quite useful may arise when the conditions record the
current values of sensory transducers (e.g. in the control system for an

industrial plant or a robot) and the actions depend on some non-Boolean
combination of such values. In such cases, the calculations needed to make
a decision could naturally be performed in <predicate>.

It is quite common when writing a set of rules, that several of them
share the same conditions (although combined via different sets of AND,
OR and NOT operators, in the classical formalism, or different predicates
in our formalism) but have different actions. It would be desirable to be
able to represent such rules with a single rule. In addition quite often the
knowledge engineer wants only one rule of the set to fire (e.g. because the
actions are mutually exclusive): this can be handled only with procedural
hand coding or clever conflict-resolution mechanisms. To overcome these
limitations we have extended the previous formalism as follows:

Rule <rule name>:

IF <condition 1>, <condition 2>, <condition N>
SATISFY <vector predicate>
THEN SELECT_ACTIONS <list of actions 1>; ...;<list of actions M>.

where <vector predicate> is a function that transforms the domain
{True, False}" into the domain {True,False}.! In IF-SATISFIES-
THEN-SELECT_ACTIONS (ISTS) rules the condition-pattern is passed to
<vector predicate>. It returns a list, called action-pattern, containing
M True or False values. The lists of actions for which a True value has been
returned are added to the conflict set; the other lists of actions are ignored.
With this formalism it is quite easy to represent a large number of rules with
a single one, and to implement any form of distributed conflict resolution.

2.2 Hybrid Control and Learning Regimes

HTR is implemented in the Poplog environment [1]. The implementation
gives the knowledge engineer complete freedom as to the kind of qualitative
or quantitative models to be used as predicates and as to their implement-
ation. In the Poplog environment external numeric/symbolic programs can
be invoked as easily as defining internal Pop-11 predicates. However, some
predefined predicates are available which enable several control and learning
regimes. They are described below.

2.2.1 Truth-table-based Predicates

When an IST rule includes only conditions without variables or with Boolean
variables only, the related predicate can be implemented via a truth table.
One advantage of this representation is that it allows a simple (though lim-
ited) form of rule induction from examples. For example, the truth table of
a predicate might be only partially specified at compile time and new entries
can be entered at runtime.

For example, a rule with two conditions and a single list of actions could
be represented by the truth table shown in Table 1, where FIREABLE is a

'The keyword SELECT-ACTIONS is optional. It has been introduced for clarity of
notation.

value that represents the “output” of the <predicate> (i.e. the action-
pattern of the rule). Then, every time the rule is considered by the inter-
preter the condition-pattern (e.g. the pattern [False,True]) is looked up in
the truth table and the related FIREABLE value is considered. If such a value
is True or False it is used to make <predicate> succeed or fail, respectively,
if it is Unknown the user (at first probably the expert) is asked to provide
a value for FIREABLE. Such a value is then stored in the truth table and
used thereafter. Alternatively, after some number of such interactions a
stochastic test could be induced.

| <condition 1> | <condition 2> | FIREABLE |

False False True
False True Unknown
True False True
True True False

Table 1: Truth-table-based predicate implementation.

In addition to allowing learning, truth-table-based predicates are an ex-
tra validation trap to catch cases that may have accidentally been missed
out. This is useful for applications such as real-time control or medical
systems, where it seems safer to have a system asking for advice in the pres-
ence of a new/unexpected situations than a system that simply ignores such
situations.

2.2.2 Collection-based Predicates

The previous idea is extended by another type of predicate that instead of
using truth tables uses collections of pattern pairs (implemented with hash
tables). Each pair includes an input pattern representing an instantiation for
the condition pattern of a rule and an output pattern of values in the range
[0,1] termed the FIREABILITY pattern. Each element of the FIREABILITY
pattern represents the level of confidence that the related list of actions
should be fired in the presence of the given condition-pattern.

Every time a collection-based predicate is called the actual condition-
pattern is searched for in the collection. If a pair is found whose condition-
pattern is equal to the given pattern then the related FIREABILITY pattern is
used to evaluate the FIREABLE values (the components of the action-pattern)
through the following formula:

FIREABLE = {T'rue if FIREABILITY > P,

False otherwise.

where P is a parameter in the range [0, 1], termed the prudence of the system
(which may or may not vary at run time). Once all the FIREABLE values
are known the behaviour of the system is the same as for truth-table-based
predicates.

Collection-based predicates can also be used to refine or induce new
rules. In fact, as in the previous method, if the condition-pattern is not

found among the stored pattern-conditions, the user is asked to provide a
value for FIREABILITY which can be stored for future use. An example of
reasonable options and the related meanings is shown in Table 2.2

| FIREABILITY | Meaning |
1 “I’'m sure the action should be fired”
0.75 “Probably the action should be fired”
0.5 “I’m not sure the action should be fired”
0.25 “Probably the action should NOT be fired”
0 “I’'m sure the action should NOT be fired”

Table 2: A possible set of meanings for FIREABILITY values.

The prudence parameter P can be used to modify the behaviour of
collection-based rules and, therefore, of the system: the greater the prudence,
the more confidence (FIREABILITY) is required for an action to be fired.

2.2.3 Artificial-Neural-Network-based Predicates

Collection-based predicates are used as a basis to implement ANN-based
predicates and obtain symbolic/sub-symbolic hybrid rules. ANN predicates
work as follows.

Initially when an ANN-based predicate is called the user is asked to
provide FIREABILITY patterns that are stored as in the case of collection-
based predicates. After a predefined number of pairs have been stored, their
components are transformed into values in the range [0,1] via rescaling and
mapping. The resulting numeric patterns are used as examples for a neural
network trained with some suitable algorithm (e.g. the backpropagation
rule). Afterwards, when the ANN-based predicate is called the condition-
pattern is fed into (and propagated through) the net and the output is taken
to be the FIREABILITY pattern of the rule and is used accordingly.

In cases where one can rely on the properties of generalisation, noise
rejection, input rectification, etc. of a neural network, ANN-based predic-
ates also behave sensibly in the presence of new or partially inconsistent
condition-patterns, without requiring the intervention of the user.

2.2.4 GA-based Learning

The previous mechanisms for inducing or refining the <predicate> of a
rule from examples require interaction with experts. However, there may
be situations when the relevant conditions and actions of a rule are known,
but there is no easy way of deciding, for a given condition pattern, if and
which actions should be chosen (e.g. rarely seen contingencies for which
a decision might require tedious or complex calculations or expensive con-
sultations with other experts). For such cases we have implemented an

2An alternative view is that of considering the FIREABILITY values of a rule as values
quantifying the percentage of cases in which such rule is true, i.e. the reliability of the
rule (e.g. 1 could mean “always valid”, 0.75 “often”, etc.).

alternative, although computationally expensive, predicate-induction mech-
anism not requiring rule-by-rule examples. It is based on Genetic Algorithms
(GAs) [3].

To explain how the mechanism works, let us consider the simple problem
of finding the truth tables needed for an ISTS rule including N conditions
and M actions. The truth table includes 2V x M FIREABLE entries, that can
be represented as a bit string. If we define an objective (or fitness) function
that scores each possible instance of the string, we can then easily apply a
GA for finding the best rule.

Typically, one will want to induce genetically several IST(S) rules (by
chaining the bit strings representing each truth table) and such rules will be
in a rulebase including other non-trainable rules. In addition, the behaviour
of a rulebase depends on the initial data in working memory. So, in HTR we
have used fitness functions that include terms that consider the accuracy of
the conclusions reached with a set of initial databases and also terms that
consider the amount of computation (number of interpreter cycles) needed
to reach such conclusions. The general form of such functions is:

J(R) =) [A(D;) + A x C(D;)]
J

R being a given rule-base, D; a initial database of facts, C'(D;) the compu-
tation required to reach a conclusion for database D;, A(D;) the accuracy of
the conclusions obtained with database D; and A a constant factor. (Com-
putation and accuracy have problem-dependent operative definitions.)

Extensions of this method to the other types of predicates have also been
implemented. For example, to induce ANN-based predicates, we encode the
weights and the biases of a neural net into the bit strings that undergo
genetic optimisation via a fixed-point number-representation.

2.3 Implementation Issues

The implementation of HTR has undergone several phases. A system hav-
ing a subset of the current capabilities of HTR was originally implemented
in Prolog [8]. Successively, some of the ideas of this system where included
(after being extended) in POPRULEBASE (PRB), a rule-based system in
Pop-11 designed by Aaron Sloman [12]. (These new features were later
used in experiments with SIM_AGENT, a toolkit for the design of intelli-
gent agents based on PRB [13].) PRB includes many unusual facilities to
control the matching of conditions and the firing of actions, including the
possibility of running plain Pop-11 code within conditions or actions. These
facilities enabled us easily to (re)implement HTR in Pop-11 using PRB as
basic inference engine.

The system allows both normal IF-THEN rules and the new IF-
SATISFY-THEN rules to be used in the same rulebase. Standard HTR
rules are simply translated into equivalent standard PRB rules. The trans-
lation of IST(S) rules is more complicated as the original conditions of such
rules are interleaved by several calls to Pop-11 code. Such code has to per-
form the following tasks: a) to assign the correct value to the condition

variables (variables that state if the related conditions are true or false);
b) to call the predicate to be satisfied by the condition variables and the
variables bound in the conditions, if any (such variables are undefined if
the related condition is false); ¢) to store the output of the predicate into
a variable. Such a variable is used by a PRB action (called SELECT) to
decide which actions to execute.

An unusual condition of PRB, called CUT, is used to control the pattern
matcher’s attempts to instantiate the conditions in IST rules. HTR syntax
allows the user to decide whether the CUT condition has to be used before or
after the result of the predicate is known, and also whether the CUT should
not be used at all. If the CUT is before the predicate, the pattern matcher
does not attempt to reinstantiate the preceding conditions, whatever the
result of the predicate. If it is used after the predicate and the predicate
fails, the pattern matcher tries to find other matches for the conditions
which might allow the predicate to succeed. If no CUT is used, the pattern
matcher instantiates the rule with all possible matches for the conditions for
which the predicates produces a non-false result.

Predefined predicates are implemented by redefining syntax words which
once compiled produce Pop-11 code via a process similar to macro expansion.
This is completely transparent to the user.

3 Experimental Results

We have implemented and used the previously described formalism and the
related rule induction mechanisms in several experiments, some of which
are described in the following subsections. A preliminary set of experiments
with Winston’s animals [16] showing some of the features of our approach
was described in [8]. In this paper we present three examples that show the
advantages of our approach in practical applications.

3.1 A Hybrid System for Diagnosing and Treating Hyper-
tension

Standard rules as well as IST and ISTS rules with numeric and collection-
based predicates have been used in the development of a hybrid rulebase
for the diagnosis and treatment of hypertension (high blood pressure). The
objective of the system is to perform an analysis of some blood pressure
(BP) measurements and anamnestic data of a patient in order to decide: a)
if he/she is hypertensive, b) if so, whether to treat him/her, and c) what
kind of drugs are more appropriate, if treatment is required.

Thanks to the expressive power of ISTS rules the rulebase includes only
seven rules. Three rules compute the average and the standard deviation of
systolic and diastolic BP measurements. Another rule evaluates the mean
BP (MBP) and its standard deviation. These are all standard IF-THEN
rules. The others are ISTS rules which make all the important medical
decisions.?

*For brevity, output messages and some anamnestic data have been removed from ISTS

The first ISTS rule,

Rule check_hypertension:
IF
sex 7sex,
age 7age,
mbp 7mbp,
mbp_std_dev 7mbpsd
SATISFY hyper_predicate
THEN SELECT_ACTIONS
hypertensive subject;
normal subject;
possible borderline subject;
STOP.

is a hybrid numeric/symbolic rule to determine if the patient is hypertensive.
It calls a user-defined predicate which receives as input a condition-pattern
including eight values: four represent the truth or falsity of the conditions,
the other four are the values of the variables in such conditions. On the basis
of this information the predicate tries to estimate a BP limit with which to
compare the MBP of the patient. In general such limit is a function of
age and sex (if sex and/or age are not available, alternative calculations are
used). The limit is then compared with MBP to determine if the patient is
hypertensive. Numeric calculations use also the standard deviation of MBP

to determine if borderline conditions are present.
The second ISTS rule,

Rule check_whether_to_treat:
IF
hypertensive subject,
hypertensive relative ==,
left ventricular hypertrophy,
retinopathy,
possible borderline subject
SATISFY treat_predicate
THEN SELECT_ACTIONS
treat subject;
do not treat subject;
STOP.

makes a decision as to whether to treat a hypertensive patient (mild or
borderline hypertension is sometimes not treated unless there is evidence of
some form of end-organ damage). It invokes a collection-based predicate.

The last ISTS rule,

Rule select_treatment:
IF
treat subject,
asthma 7degree,
diabetes ?type
SATISFY drug_predicate
THEN SELECT_ACTIONS

rules.

Patient 1 Patient 2 Patient 3 Patient 4
(Normal) (Borderline Hypertensive) (Borderline Hypertensive) (Hypertensive)

sex male sex female sex female sex male
age 30 age 25 age 25 age 55
bp 82 120 bp 80 130 hypertensive relative hypertensive relative
bp 75 136 bp 95 134 (mother) (mother and brother)
bp 85 143 bp 96 164 bp 80 130 asthma severe
bp 88 122 bp 90 140 bp 95 134 bp 100 145
bp 86 138 bp 87 140 bp 96 164 bp 102 154

bp 90 140 bp 93 148

bp 87 140 bp 105 176

bp 108 155

Table 3: Initial working memories for four patients.

administer beta-adrenoceptor blocking drug;
administer angiotensin converting enzyme inhibitor;
administer calcium-channel blocking drug;
administer diuretic;

administer alternative drugs;

STOP.

has the function of selecting the most appropriate drug (or combination of
drugs) for the treatment. For brevity, only two (out of fifteen) anamnestic
data entries which determine the drug-compatibility of a patient are in-
cluded. The rule calls a collection-based predicate.

Let us now consider the behaviour of the system during the pre-release
phase in which the last two IST rules are to be induced completely (i.e. their
collections are empty). The system has the capability of determining if a
patient is hypertensive and if borderline conditions exist. The expert has
to run the system with the data of several patients to “fill the gaps”. Here
we report on the experiments performed with the data of the four patients
described in Table 3.

In a first experiment the system was run with prudence P = 1. Patient
1 was classified as normal by hyper_predicate and the system was stopped
without any user interactions (i.e. before the other IST rules where checked).

Patient 2 was first classified as borderline hypertensive, then rule
check whether to_treat was checked and treat predicate was called
with condition-pattern [True,False,False,False,True]. As the collection
did not contain such pattern, the medical user was asked to provide a
FIREABILITY pattern. She gave [0.7,0.3,0] to indicate that probably the
patient should have been treated. However, as P = 1 the fact “treat sub-
ject” was not added to the database and the system halted.

Having the same numeric data as patient 2, also patient 3 was classified
as borderline hypertensive. However, in this case treat_predicate was
called with condition-pattern [True,True,False,False,True] as the subject’s

“Columns 2 and 3 actually show data which relate to the same subject. The only
difference is the presence of information about an hypertensive relative.

10

mother was hypertensive. For this reason the doctor gave a FIREABILITY
pattern [0.8,0.2,0] as she was nearly sure that the patient should have been
treated. However, with P = 1 no further inference was possible.

Patient 4 was classified as definitely hypertensive and treat_predicate
was called again with condition-pattern [True,True,False,False,True]. As
such a pattern was now in the collection, a FIREABILITY pattern [0.8,0.2,0]
was retrieved but no further inference was possible.

Obviously, after the first experiment, running the system on the same
data produced the same results. The difference was that no user interaction
was then needed.

Reducing the prudence to P = 0.75 did not alter the inferences on pa-
tients 1 and 2. However, it enabled rule select_treatment to be checked
for patients 3 and 4, as rule check_whether_to_treat was able to determ-
ine that they had to be treated. For patient 3 drug predicate was called
with only the condition “treat subject” satisfied and the doctor was asked to
provide a FIREABILITY pattern. She gave [1,0,0,0,0,1] to mean: “definitely
give a beta-adrenoceptor blocking drug and stop”. For patient 4 also the
condition about asthma was true and the variable 7degree was instantiated
to the value severe. As in this situation beta-adrenoceptor blocking drugs
are contra-indicated, the user gave [0,0,0,1,0,1] to mean: “give diuretics and
stop”.

Setting the prudence P = 0.5 allowed to make additional inferences
on patient 2 (no change happened for patient 1, 3 and 4 with respect to
the previous case). In particular the system was able to establish that
the subject had to be treated as the first element of the pattern [0.7,0.3,0]
recalled in treat_predicate was now above P. The treatment suggested was
the same as for patient 3. The decision to treat patient 2 was considered
imprudent by the doctor.

3.2 Robot Motor Control

In order to show the advantages of using predicates based on artificial neural
networks we now consider a motor control problem. The problem consists of
designing a set of rules that allow a robot to react properly in the presence
of obstacles.

The robot has engines and wheels that allow it to move in (at least) four
main directions: forward, backward, left and right. It has eight proximity
sensors that reveal the presence of obstacles at 0°, 45°, 90°, ... 315° (clock-
wise with respect to its current heading). As two or more sensors can detect
the presence of obstacles for any given position (e.g. because the robot is in
a corner or in a tight corridor), writing a set of rules for the four possible
motor actions could be relatively difficult with a non-trainable rule-based

system.
Instead, with our formalism, we need only the following rule

Rule obstacle_avoidance:

IF Obstacle at 0 degrees, Obstacle at 45 degrees,
Obstacle at 90 degrees, Obstacle at 135 degrees,
Obstacle at 180 degrees, Obstacle at 225 degrees,

11

Obstacle at 270 degrees, Obstacle at 315 degrees
SATISFY obstacle_predicate
THEN SELECT_ACTIONS Go forward; Go backward; Go left; Go right.

where obstacle_predicate is a vector predicate implemented via a neural
network plus a winner-takes-all output filter that prevents more than one
True value being present in the action-pattern.

In this experiment we have allowed the ANN-based predicate to collect
a training set including a total of 25 examples (out of the 256 possible
condition-patterns). Eight condition-patterns had only one True value (only
one sensor detecting a collision); 17 included two True values. Then, we
trained the net and used it thereafter.

Figure 1 reports on some results obtained with this scenario. The lower
part of the figure shows six different situations, labeled (a)—(f), in which
the robot (represented as an octagon) can collide with obstacles. The table
in the upper part of the figure reports the sensory conditions for each situ-
ation and the correspondingly selected action. The local conflict resolution
implemented via the winner-takes-all filter prevents more than one action
from being fired. The generalisation properties of the neural net provide the
correct behaviour even in the presence of new condition-patterns containing
two or more True values (situations (c)—(f)). A variant of this rule (with
a different syntax which is functionally equivalent to the one presented in
this paper) has been used as a behaviour sub-system for the subsumptive
architecture of a simulated robot, as described in [13].

3.3 Inter-Agent Communication

The GA-based rule induction mechanism described in Section 2.2.4 has been
(and it is currently) used, in more complicated experiments, for the devel-
opment of communication between agents. In the following we describe the
simplest of these experiments (the experiment has been implemented using
SIM_AGENT [13]).

The experiment involves two agents: a blind agent and a lazy one. The
blind agent can move in the world (the 2-D Cartesian plane) and can receive
messages from the other agent, but is not capable of “visually” perceiving
it. The lazy agent can perceive the (roughly quantised) relative position of
the blind agent and can send messages, but cannot move. Both agents are
implemented via a small set of rules the most important of which are:

Rule lazy_message_transmission:

IF Blind is north, Blind is south, Blind is east, Blind is west
SATISFY lazy_ga_predicate

THEN SELECT_ACTIONS Send word 1; Send word 2; Send word 3; Send word 4.

Rule blind_message_interpretation:
IF Received word 1, Received word 2,
Received word 3, Received word 4
SATISFY blind_ga_predicate
THEN SELECT_ACTIONS Go east; Go west; Go north; Go south.

where lazy_ga predicate and blind ga_predicate are two vector predic-
ates implemented via truth tables. The objective of the experiment is to

12

Conditions Actions

FExp. | 0° [45° [90° [135° | 180° | 225° | 270° | 315° [Forward | Backward | Left | Right
(a) X X

(b) | x X X

(c) X X X X

(d) | x X X X X

(e) | x | x X X X X

() X | x X X X

Figure 1: Experimental results for robot obstacle avoidance.

induce such predicates (by means of a genetic algorithm) so as to obtain
cooperation (via communication) between the two agents that results in
the blind agent moving towards and finally reaching the lazy one, for any
possible initial mutual positions.

In the simulation message sending and position perception are obtained
by a scheduler that repeatedly runs the rulebase of each agent and changes
the database of each one so as to include new sensory data or new messages
(clean-up rules remove the old data from each database).

In order to represent the truth tables of the aforementioned rules bit
strings including 128 bits are needed. Each of such bit strings represents
a possible rule-base. We associate to each rulebase a fitness which is the
negative of the sum of the distances between the blind and the lazy agents
measured at the end of four different runs of the simulation. In each run the
lazy and the blind agents start in different relative locations (the furthest
corners of a square).

The truth tables induced by running a GA with a population of 20
rule-sets (bit strings) for 50 iterations are shown in Tables 4 and 5.° The

®Some of the entries of these truth tables have been removed as not all the combinations
of conditions can actually occur.

13

corresponding rules provide the two agents with the required behaviour, i.e.
they meet each other within a minimum number of steps. An example of
such a behaviour is shown in Figure 2. The figure is a graphical representa-
tion of a run (not included in the training set) in which the lazy agent (the
circle marked with a dot) was at (0.2,0.3) and the blind one started from
(0.9,0.7). Note how the blind agent follows the shortest route to the lazy
agent as a result of the communication.

Conditions Actions
Blind Blind Blind Blind Send Send Send Send
is north | is south | is east | is west || word 1 | word 2 | word 3 | word 4

X X X
X X X

Table 4: Truth table representing lazy_ga predicate.

Conditions Actions
Received | Received | Received | Received Go Go Go Go
word 1 word 2 word 3 word 4 east | west | north | south
X X X
X X X
X X X
X X X X X

Table 5: Truth table representing blind _ga_predicate.

4 Conclusions

In this paper we have presented HTR a hybrid system in which different
control and learning regimes co-operate tightly to produce robust, flexible,
trainable and efficient architectures. All this has been obtained thanks to
a new formalism for rule representation that in addition to lending itself to
rule induction and refinement is also very concise.

On the grounds of the experimental results, we believe that HTR is not
“yet-another-rule-based system” but one that offers new powerful solutions
for problems in which knowledge is uncertain, inconsistent, incomplete or
variable.

Acknowledgements

The authors wish to thank Dr. Riccarda Del Bene (Department of Cardi-
ovascular Medicine, Queen Elizabeth Hospital, The University of Birming-
ham) for her useful suggestions and help in developing the rulebase described
in Section 3.1.

14

Figure 2: A run of the communication induction experiment.

References

[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

J.A.D.W. Anderson, editor. POP-11 Comes of Age: The Advancement
of an AI Programming Language, Chichester, 1989. Ellis Horwood.

C. L. Forgy. OPS5 User’s Manual. Carnegie-Mellon University, Pits-
burgh, PA, 1981. Tech. Report CMU-CS-81-135.

David E. Goldberg. Genetic Algorithms in Search, Optimization, and
Machine Learning. Addison-Wesley, Reading, Massachusetts, 1989.

T. M. Mitchell, R. M. Keller, and S. Kedar-Cabelli. Explanation-based
generalization: a unifying view. Machine Learning, 1(1):47-80, 1986.

E. Motta, M. Fisenstadt, M. West, K. Pitman, and R. Evertsz. Keats:
The knowledge engineers assistant. Fzpert Systems: The International
Journal of Knowledge Engineering, 1988.

D. Ourston and R. J. Mooney. Theory refinement combining analytical
and empirical methods. Artificial Intelligence, 66:273-309, 1994.

R. Poli, S. Cagnoni, R. Livi, G. Coppini, and G. Valli. A neural net-
work expert system for diagnosing and treating hypertension. IFEF
Computer, 24(3):64-71, 1991.

Riccardo Poli and Mike Brayshaw. A hybrid trainable rule-based sys-
tem. Technical Report CSRP-95-3, University of Birmingham, March
1995.

C. Rich. Cake: An implemented hybrid knowledge representation and
limited reasoning system. SIGART Bulletin, 2(3):120-127, 1991.

15

[10] J. F. Schreinmakers. Pattern Recognition and Symbolic Approaches to
Diagnosis. Eburon:Delft, The Netherlands, 1991.

[11] L. Shastri. A connectionist approach to knowledge representation and
limited inference. Cognitive Science, pages 331-392, 1988.

[12] A. Sloman. Poprulebase help file, 1995. Available at URL
ftp://ftp.cs.bham.ac.uk/pub/dist/poplog/prb/help/poprulebase.

[13] Aaron Sloman and Riccardo Poli. SIM_AGENT: A toolkit for exploring
agent designs. In Intelligent Agenis — Proceedings of the 1995 Work-
shop on Agent Theories, Archilectures and Languages. Springer-Verlag

(LNAT Series), 1995.

[14] D.S. Touretzky and G. E. Hinton. A distributed connectionist produc-
tion system. Cognitive Science, 1988.

[15] G. G. Towell and J. W.Shavlik. Knowledge-based artificial neural net-
works. Artificial Intelligence, 70:119-165, 1994.

[16] P. H. Winston. Artificial Intelligence. Addison-Wesley, third edition,
1992.

16

