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Abstract. Recent theoretical work has characterised the search bias of GP sub-
tree swapping crossover in terms of program length distributions, providing an
exact fixed point for trees with internal nodes of identical arity. However, only
an approximate model (based on the notion of average arity) for the mixed-arity
case has been proposed. This leaves a particularly important gap in our knowl-
edge because multi-arity function sets are commonplace in GP and deep lessons
could be learnt from the fixed point. In this paper, we present an accurate theo-
retical model of program length distributions when mixed-arity function sets are
employed. The new model is based on the notion of an arity histogram, a count
of the number of primitives of each arity in a program. Empirical support is pro-
vided and a discussion of the model is used to place earlier findings into a more
general context.

Keywords: Genetic Programming, Sub-Tree Swapping Crossover, Program
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1 Introduction

Understanding how Genetic Programming (GP) explores the space of computer pro-
grams requires two things [12, Chapter 11]: a) characterising the search space itself,
e.g., in terms of how fitness is distributed in it, and b) explaining how GP explores it,
particularly in terms of the search biases of its genetic operators.

Research on the characterisation of the search space has provided evidence of how
program functionality and fitness are distributed in program spaces (e.g., showing that
beyond a certain minimum program length the distributions of program functionality
and, therefore, fitness converge to a limit [6–9]). Research has also characterised the
search bias of GP sub-tree swapping crossover in terms of program length distributions,
providing an exact fixed point for trees with internal nodes of identical arity [11,13] and
an approximate fixed point for the mixed-arity case [1, 2].

Understanding the sampling of program length is of particular importance to GP. For
example, this has the potential to shed light on the phenomenon of bloat (see [12, Chap-
ter 11] for a recent survey on the topic). Indeed, the work on the fixed-point distribu-
tions of program lengths under sub-tree crossover mentioned above has led to a new
bloat theory – crossover-bias – a number of suggestions for experimental parameter
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selection and a new method to control sampling, by length, of GP operators – operator
equalisation.

One crucial question still open is how to exactly model the limiting distribution of
program lengths when mixed-arity function sets are employed. This is particularly inter-
esting because multi-arity function sets are commonplace in GP and important lessons
could be learnt from knowing the fixed point.

Note, this is not just a question of better accuracy. Until now, it has not been possible
to explain a number of strange empirical findings for mixed arity representations. Why,
for instance, are programs with certain compositions of primitives much more likely
to be sampled than programs with another composition even if both have exactly the
same length? Also, why is it that for smaller lengths, the empirical limiting distribution
of program lengths shows a rugged zigzagging profile instead of following the smooth
descent, with each succeeding length class sampled with less frequency, seen with com-
mon arity function sets? What we need is a model that can explain these phenomena. In
this paper we present an accurate theoretical model of program length distributions for
mixed-arity function sets which does just that.

The paper is organised as follows. In section 2, we describe a number of models for
the prediction of program length based on the repeated application of GP sub-tree swap-
ping crossover, with uniform selection of crossover points, on a flat fitness landscape,
i.e., to determine the bias of this operator by removing all other effects. In Section 3, we
extend this work and use a number of mathematical generalisations to produce a new
model to predict individual occurrence in a population using arity histograms. This is
then used to model length class frequencies exactly. Strong empirical evidence is pro-
vided in Section 4 to support both models; in particular we show how the length model
can be successfully fitted to shorter length classes for mixed arity cases. In Section 5,
we discuss the sampling implications of the models and their relationship to the work
presented previously in this area notably its implications for program length sampling
and GP bloat. Finally, we summarise our findings in Section 6.

2 Background

In [11], a number of models were proposed to predict a limiting distribution of GP tree
sizes when sub-tree swapping crossover, with uniform selection of crossover points,
was applied on a flat fitness landscape. The limiting distribution of internal nodes for
a-ary trees, those whose internal functions have a common arity, a, was shown to be the
following Lagrange distribution of the second kind:

Pr{n} = (1−apa)
(

an + 1
n

)
(1− pa)(a−1)n+1pa

n, (1)

where Pr{n} is the probability of selecting a tree with n internal nodes and a is the
arity of functions that can be used in the creation an individual. The parameter pa was
shown to be related to a and the average size of the individuals in the population at
generation 0, µ0, according to the formula:

pa =
2µ0 +(a−1)−

√
((1−a)−2µ0)2 + 4(1−µ2

0)

2a(1 + µ0)
. (2)
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In [1], Equation (1) was generalised for mixed arity cases with an average internal
arity ā replacing a. ā can be predicted from experimental parameters for traditional
initialisation methods such as GROW and FULL [10] or determined at run time by
calculating the average internal arity at generation 0. The Gamma function, Γ, was used
to redefine the binomial coefficient (factorials are replaced using Γ(n+1) = n!) so that
the model could accept non-integer average arity values. This resulted in the following
equation:

Pr{n} = (1− āpā)
Γ(ān + 2)

Γ((ā−1)n + 2)Γ(n + 1)
(1− pā)(ā−1)n+1 pn

ā. (3)

Note that this equation is also expressed in terms of internal node counts. Strong em-
pirical support was found in [1] for both Equations (1) and (3).

A further generalisation to length classes,1 i.e., to also include external nodes, or
leaves, was found to be successful for a-ary trees in [2]. However, the generalisation
to length classes for mixed-arity trees was found to be less successful, being unable
to precisely predict the frequency for the smaller length classes, where a smooth de-
scent was predicted by the models but a more rugged shape was found to occur. As
an example, Figure 1 shows experimental and predicted results for sub-tree swapping
crossover acting on trees with available arities of 1, 2, 3 and 4 (the experimental set-up
is as described in section 4).

In related work [4], empirical evidence was provided to suggest that the probability
of the occurrence of an individual in a GP population after repeated application of
sub-tree swapping crossover on a flat fitness landscape would be determined by the
individual’s arity histogram – a count of the number of nodes in a tree of each arity (see
Figure 2 for an example). Within length classes, programs with certain arity histograms
were more likely to be found than others. However, within arity histogram classes there
is no bias to sample certain program shapes, indicating that arity histograms represent
the lowest level of granularity at which length-related biases occur in the presence of
sub-tree swapping crossover.2

In the following sections we embrace the idea that if we are to exactly predict length
distributions for mixed-arity cases, we will have to incorporate arity histograms in our
models. For a-ary trees the arity histogram is, of course, simply the associated internal
and external node counts, which explains the earlier success with the a-ary models.

3 Arity Histogram Model

From the work described the previous section, we know that we wish to predict the
probability of occurrence of an individual with a particular arity histogram. If we choose
na to represent a count of arity a nodes, we can define a particular arity histogram
of an individual, as the tuple (n0, . . . ,namax). Note, n0, is the number of leaves, i.e.,
nodes with an arity of zero. Using our new notation we can term our target probability,
Pr{n0, . . . ,namax}.

1 Length was derived using the relation � = an+1.
2 Note that unique programs are a subclass of program shapes which are a subclass of arity

histogram classes which are in turn a subclass of program lengths.
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Fig. 1. Comparison between model (ā = 2.5) and empirical program length distributions for trees
created with arity 1, 2, 3 and 4 functions and terminals only, initialised with FULL method (depth
= 3, initial mean size µ0 = 25.38, mean size after 500 generations µ500 = 23.72). Population size
= 100,000.

Below, we will attempt to identify this function by means of generalisation from
previous results and intuition. The ‘acid test’ for the result of our generalisation will be
whether or not it fits the empirical data in a variety of conditions.

Let us start by reviewing Equation (1), the original model for a-ary representations.
We can see that in order to generalise it, we need to introduce the concept of multiple
arities, particularly the associated pa and na values.

First, we postulate that we now have a set of pa values each associated with a single
arity. If we interpret these as forming a probability distribution, we can then imagine
that product apa in the first term of the equation, actually represents an ‘expectation’ of
a.3 If this is correct, then the first term (1−apa) should be changed to (1−∑a≥1 apa).

The original binomial coefficient term represents the number of ways of choosing
internal nodes of the same arity, a, from the length of the resulting tree, an + 1. We
need to alter this by selecting each arity count, na, from the tree length that can be built
with this collection of arities, ∑a≥1 ana + 1. Our binomial coefficient term, therefore,
becomes the multinomial coefficient

(∑a≥1 ana+1
n0,...,namax

)
, where n0 is the count of leaves, n1 is

the count of the functions with arity 1, etc.
The third term, (1− pa)(a−1)n+1, can be broken into two parts. The superscript is

simply the number of terminals for the tree, which we know to be n0. As with the
first term we alter (1− pa) to a mixed arity equivalent, which we postulate to be (1−
∑a≥1 pa).

3 In our a-ary model: E[a] = 0× (1− pa)+a× pa = apa.
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Fig. 2. A proposed solution for the Artificial Ant problem [5] (a) and its associated arity his-
togram (b)

Continuing this analogy, the final term, pn
a, represents the value, pa, to the power of

the number of nodes, n. We need to now split out the term so that each value of pa is
associated with the appropriate na value. The most natural way to do this is to turn the
final term into the product ∏a≥1 pna

a .
Putting this altogether, we obtain our mixed-arity model for the limiting distribution

of arity histograms created by sub-tree swapping crossover:

Pr{n0, . . . ,namax} = (1− ∑
a≥1

apa)
(

∑a≥1 ana + 1
n0, . . . ,namax

)
(1− ∑

a≥1
pa)n0 ∏

a≥1
pna

a . (4)

This equation has now become a multivariate Lagrange distribution of the second kind.
Note, the introduction of counts for program leaves will only affect the second and third
terms. On closer inspection we can also see that there is in fact no need to calculate p0.4

Next, we need to create a model that will turn arity histogram probabilities into those
of length classes. The set of arity histograms that represent a particular program length
� can be defined as: {

n0, . . . ,namax : ∑
a≥1

ana + 1 = �

}
. (5)

We can, therefore, calculate the probability of a particular program length by summing
the probabilities for each of the associated arity histograms, i.e.,

Pr{�} = ∑
n0,...,namax :∑a≥1 ana+1=�

Pr{n0, . . . ,namax}. (6)

4 If we define p0 to be 1−∑a≥1 pa and allow the fourth term to run from a = 0, we could also
omit the third term.
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We term this a Lagrange distribution of the third kind. The formula clarifies that the
length bias with which sub-tree swapping crossover samples program spaces is, in fact,
the result of an even more primitive bias associated with arity histograms.

In the next section we will provide empirical support for our new models of arity-
histogram and length distributions, to ensure that they continue to predict a-ary repre-
sentation length distributions and will now accurately model mixed arity representations.

4 Empirical Validation

In order to verify empirically the models proposed, a number of runs of a GP system
in Java were performed. A relatively large population of 100,000 individuals was used
in order to reduce drift of average program size and to ensure that enough programs of
each length class were available. The FULL initialisation method was used with non-
terminals being chosen with uniform probability. Each run consisted of 500 generations.
All results were averaged over 20 runs.

To check if the models presented in the previous section match experimental data we
need to fit them to the data so as to identify the parameters pa. This fit was achieved
using a hill climber search program that reduced the mean squared error from that ob-
served in the final generation and that predicted by the theoretical distribution, by alter-
ing the pa values.5

Our first step was to see if there is evidence that arity histogram occurrence is mod-
eled correctly. In Figure 3, we can see two views of the modeled and empirical data for
each experiment. The X-Y plots on the left report the frequency for each arity histogram
predicted via Equation (4) vs the corresponding empirical frequency. Note how the data
points lie on, or very close to, the diagonal line that represents perfect prediction. Each
point in the scatter plots on the right shows either the actual or the predicted frequency
for an arity histogram vs the length class it corresponds to. The multiple points at each
length are the elements of the set in Equation (5). Of particular interest is that even with
a relatively large population size, certain histograms are exceptionally rare. For exam-
ple, occurrences for a histogram consisting of arity one functions and a single terminal
for the 1 & 3 arity experiment, are predicted to be less than 1 by the time we reach a
length of 9 nodes and far less in the other experiment.

As we can see in Figures 4 and 5, the model in Equation (6) fits very well the fre-
quencies associated to all length classes for mixed arities. Note in particular how the
model, that incorporates the arity histogram model from Equation (4), now captures the
fluctuating early values for mixed arity representations.

In order to confirm that Equation (6) is in fact a generalisation of earlier work and
accurately predicts a-ary distributions, Figures 6 and 7 show the model and observed
data from the final generation for 1-ary and 2-ary trees. In this case the pa values for
the model were calculated using Equation (2).

In essence, we now have evidence that we have isolated the fundamental compo-
nents of the limiting length distribution for sub-tree swapping crossover. Further work is

5 Initial values of pa were set uniform randomly between 0 and 0.2. A number of runs were
performed and best results were found using small variations (less than 0.001%) with a high
number of alternatives at each step (typically 100).
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Fig. 3. Comparison between unique arity histogram count observations and arity histogram model
predictions obtained by best fit for trees created with arity 1 and 3 functions (a) & (b), arity 1, 2,
3 and 4 functions (c) & (d), and terminals only. Experimental parameters as described in figures
4 and 5 respectively. Diagonal lines added to (a) & (c) represent perfect prediction.

required to make this a complete predictive model, i.e., we need a formula to determine
pa values for mixed arity representations. However, we can now place the findings from
earlier work in this area into further context. This is discussed in the next section.

5 Sampling Implications

From our analysis we can now be confident in the assertion that the limiting distribution
of program lengths for a GP population after the repeated application of sub-tree swap-
ping crossover, with uniform selection of crossover points, on a flat fitness landscape,
is determined solely by the mix of node arities in the initial population.

From the work provided in [4], we know that there is empirical evidence to show that
there is no bias for sub-tree swapping crossover to place a particular node label at any
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Fig. 4. Comparison between empirical length distributions and an arity histogram model obtained
by best fit for trees created with arity 1 and 3 functions and terminals only, initialised with FULL
method (depth = 3, initial mean size µ0 = 15.00, mean size after 500 generations µ500 = 15.75).
Population size = 100,000. p1 = 0.2186684078761787, p3 = 0.15804781356057954.
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Fig. 5. Comparison between empirical length distributions and an arity histogram model obtained
by best fit for trees created with arities 1, 2, 3 and 4 functions and terminals only, initialised with
FULL method (depth = 3, initial mean size µ0 = 25.38, mean size after 500 generations µ500 =
23.72). Population size = 100,000. p1 = 0.09117030091320417, p2 = 0.08112567496250808, p3
= 0.0702296050436014, p4 = 0.0643780797663895.
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Fig. 6. Comparison between empirical length distributions and an arity histogram model created
with arity 1 functions and terminals only, initialised with FULL method (depth = 15, initial mean
size µ0 = 16.00, mean size after 500 generations µ500 = 16.15). Population size = 100,000.
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Fig. 7. Comparison between empirical length distributions and an arity histogram model created
with arity 2 functions and terminals only, initialised with FULL method (depth = 3, initial mean
size µ0 = 15.00, mean size after 500 generations µ500 = 14.19). Invalid even lengths are ignored.
Population size = 100,000.
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position in a tree. All programs with a particular arity histogram are, therefore, equally
likely to be sampled by the application of sub-tree swapping crossover in the absence
of other operators. By extension, we can also say that all programs of a certain length
are equally likely to be sampled for a-ary trees; this is not true, however, for mixed
arity representations. If one wishes to ensure uniform sampling within length classes,
alternative variation operators will need to be devised when mixed arity representations
are employed with sub-tree swapping crossover.

Looking more closely at Equation (4), we can see that the first term will remain
constant for all arity histograms whilst the second term, the multinomial coefficient,
will increase the probability for arity histograms that can produce more shapes. The
third and final terms decrease rapidly with increasing values of the na’s producing the
eventual smooth curve. Therefore, arity histograms presented to Equation (6), that can
produce more shapes than other arity histograms in a particular length class, will have
a higher probability of being sampled within that class.

Disregarding the fluctuations shown in earlier length classes for mixed arity classes,
Equation (6) is decreasing. The crossover bias bloat theory was originally proposed
based upon evidence presented by the internal node count models and their decreasing
nature, to recap:

I In each generation selection populates the mating pool with relatively fit programs
II The sub-tree swapping crossover operator will then produce children with a length

distribution biased towards smaller programs irrespective of their fitness6

III If smaller programs cannot obtain a relatively high fitness, which after the initial
generations of any non-trivial GP problem is highly likely, they will be ignored by
selection in the next generation

IV Hence, average program size will increase as ever larger programs are placed into
the mating pool

Equation (6) and the empirical work provided in Section 4 provide extra evidence to
support this theory for sub-tree swapping crossover, in that our more pertinent length
model varies only slightly from the smooth descent described for the internal node
models presented in Section 2 and used as the basis for the theory in [1]. One can argue
that any variation operator that has a bias towards smaller programs will cause bloat in
this way and the theory should be renamed to operator length bias.

Recent work by Soule [15] has shown empirical evidence of a similar sampling ef-
fect for other types of crossover, in addition particular emphasis is placed on variations
to sampling caused by altering the nature of the fitness landscape. Future research may
look into the speed of convergence to Lagrangian type distributions for different varia-
tion operator and problem combinations, i.e., to enable us to gauge which experimental
set-ups are likely encounter bloat earlier during an experimental run.

The internal node and length a-ary models presented in Section 2 can be used as pre-
dictive models without modification. The length model for mixed arity trees developed

6 It is important to note that there is no change in the average size of programs found in the
mating pool from those produced in the resulting child population, i.e., the next generation.
However, the distribution has a sampling bias towards smaller programs, with relatively few
larger programs.
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there remains a strong model for approximation if an exact fit for earlier length classes
is not required. One could, for example, use this to implement broad structural conver-
gence measures suggested in [4]. If a more exact model was required, a fit to internal
node counts could be used.

The generalised mixed arity internal node model (Equation (3)) is also an interesting
starting point to further analyse the arity histogram model proposed here. We can ask
how was such a generalised model so successful when only leaves were removed from
the investigation? For example, would Equation (6) collapse to Equation (3) with further
analysis? This is left to future work.

Finally, recent work using length based operator equalisation methods [3, 14], i.e.,
those that modify selection probabilities according to current and desired length dis-
tributions, do not guarantee uniform sampling of unique programs within the length
classes desired.7 One could imagine an extension to the method, however, to sample
uniformly within length classes by storing a histogram of arity histograms, possibly
using a hashing function as lengths increase. Indeed, as an alternative, it is possible to
design an arity histogram equaliser to ensure that certain, desired, distributions of arity
counts are selected.

6 Conclusions

In this paper we have generalised the Lagrange distribution of the second kind that
has recently been shown to represent the limit program length distributions for sub-tree
swapping crossover in the presence of single-arity function sets to the important and
much more common multi-arity case.

The generalisation has required to express this fixed point via the use of arity his-
tograms which effectively generalise the internal node counts and average arities used
in prior work. Arity histograms are the fundamental components of GP sub-tree swap-
ping crossover with regard to program sampling.

This model has allowed us to understand a number of sampling effects and to accu-
rately model not just the smooth descending curves of the internal node models but also
those of the more rugged true length distributions, i.e., those that also include leaves.
From this, we can now place a number of earlier findings into a more general context.
We can also start making use of our new knowledge about the biases of crossover. For
example, we can confirm hypotheses about bloat and generalise cures for it.
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