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Abstract— In this paper we investigate a form of selection
where parents are not selected independently. We show that a
particular form of dependent selection, linear selection, leads
a genetic algorithm with homologous crossover to become very
similar to a genetic algorithm with standard (independent)
selection and headless chicken crossover, i.e., it turns crossover
into a type of mutation. In the paper we analyse this form of
selection theoretically, and we compare it to ordinary selection
with crossover and headless chicken crossover in real runs.

I. INTRODUCTION

Different selection methods have been analysed mathemat-
ically in depth in the last decade or so. The main emphasis
of previous research has been the takeover time [4], i.e.,
the time required by selection to fill up the population with
copies of the best individual in the initial generation, and
the evaluation of the changes produced by selection on the
fitness distribution of the population [2], [3], [7]. In this
second line of research, the behaviour of selection algorithms
is characterised using the loss of diversity, i.e., the proportion
of individuals in a population that are not selected.

Starting from some simple observations on the sampling
behaviour of tournament selection, in [9], [8] it was shown
that this is a possible source of inefficiency in Evolutionary
Algorithms (EAs). This previously unknown phenomenon
has very deep implications, its analysis effectively leading
to a completely new class of EAs – the backward-chaining
EA – which is more powerful and closer in spirit to classical
artificial intelligence techniques than traditional EAs. In
addition, this analysis was used in [13] to define new forms
of tournament selection that would not suffer from this
phenomenon.

These theoretical studies are very comprehensive and
appeared to have completely characterised selection, fun-
damentally making it a largely understood process. How-
ever, something important has been neglected: all theoretical
studies have considered forms of selection where the parent
individuals are selected independently. The more general case
of dependent selection has, therefore, remained a totally un-
chartered terrain. In this paper we start filling this theoretical
gap.

Naturally, some limited forms of selection where parents
are not selected independently have been considered by
practitioners. For example, [12] introduced the notion of
tournament selection without replacement, which effectively
induces a small dependency in the selection of individuals.
However, this paper is focused on much more extreme
forms of dependent selection. Also, we are interested in
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understanding the effects of the interactions between such
forms of selection and the genetic operators.

When crossover is used, two parents need to be selected.
These are typically drawn independently, so the probability
of a pair of parents (x, y), is given by the product of their
selection probabilities, i.e., p(x, y) = p(x)p(y). In some
selection schemes, such as the one originally proposed in [5],
one parent is selected based on its fitness, while the second
is randomly picked from the population. In this case, the
probability of selecting the second parent is simply given
by its frequency, φ(x), in the population. So, p(x, y) =
p(x)φ(y). However, in principle, any assignment of p(x, y)
such that p(x, y) ≥ 0 and

∑
x

∑
y p(x, y) = 1 would be

an acceptable form of joint parent selection. In fact, any
such form of selection would also be implementable, albeit
not very efficiently. For example, given a population P one
would just need to create a new population, P 2, of pairs of
individuals (effectively the Cartesian product of P with P ),
associate to each pair a virtual fitness p(x, y), and then select
pairs via roulette wheel selection.

Not all such forms of joint selection would make sense,
though. So, it is natural to start by asking whether there are
meaningful ways of performing the joint selection of two
parents based on p(x), p(y), φ(x) and/or φ(y) other than
via a product formula. In this paper we study the following
forms:

• The simplest of such combinations is where a pair of
parents is selected based on the straight average of
the selection probabilities of the parents. That is we
consider the case

p(x, y) =
p(x) + p(y)

2
· α−1 (1)

where α is a normalisation factor such that∑
x,y p(x, y) = 1. We will term this form of selection

pure linear selection.
• As we will explain in the following section we also

consider a second form of linear selection, semi-linear
selection, which has the following form:

p(x, y) =
p(x) + p(y)

2α
δxδy (2)

where δx is 1 if x is in the population and 0 otherwise
(likewise for δy).

• We also consider

p(x, y) =
F (x) + F (y)

2
φ(x)φ(y) · α−1 (3)

where, again α is a normalisation factor, and F (x) is
a function of the fitness of individual x (but does not
necessarily coincide with it). Likewise for F (y). We call



this form of selection Holland’s selection for reasons
that will become clear later.

Surprisingly, as we will see in the following, we find that
linear selection leads a Genetic Algorithm (GA) with ordi-
nary (homologous) crossover to become very similar to a GA
with standard (independent) selection and headless chicken
crossover [6], [1]. Headless chicken crossover is a form of
crossover where an individual selected from the population
is crossed-over with a randomly created individual. So, with
most forms of crossover used in standard GAs operating on
fixed-length strings (e.g., uniform crossover, one- and multi-
point crossover, etc.), on average each application of headless
chicken crossover introduces 50% random material in the
offspring. That is, unexpectedly linear selection effectively
transforms crossover into a type of adaptive macro mutation.

Holland’s selection, instead, is surprising for a different
reason. It is provably identical to the selection method used
by Holland [5] who, in a selecto-recombinative GA, selected
the first parent based on fitness and chose the second parent
randomly and uniformly from the population. This is in fact
the reason why we gave name “Holland’s selection” to the
selection scheme in Equation (3).

This article is organised as follows. In Section II we
provide a more precise definition of linear and semi-linear
selection and Holland’s selection and derive exact evolution
equations that describe the dynamics of a system with such
selections and crossover in the infinite population limit. We
then compare these with corresponding equations for normal
selection and for headless chicken crossover in Section III.
This allows us to identify efficient algorithms to implement
linear selection. In Section IV we study the behaviour of
different forms of selection by performing real runs. Finally,
Section V presents some conclusions.

II. LINEAR AND HOLLAND’S SELECTION

It is well known (e.g., see [14]), that in the infinite
population limit, a genetic system with with selection and
100% crossover (i.e., pxo = 100%), but in the absence of
mutation (i.e., pm = 0%), is governed by the following
equation

φ(z, t + 1) =
∑

x,y∈Ω

p(x, y, t)p(x, y → z) (4)

where φ(z, t + 1) represents the frequency of individuals of
type z in the next generation (t + 1), Ω is the search space,
p(x, y, t) is the probability of selecting parents x and y at
generation t, and p(x, y → z) is the probability of obtaining
an offspring of type z when crossing-over parents of types
x and y.1

We could trivially specialise this equation to the form of
linear selection mentioned in Section I by setting

p(x, y, t) =
p(x, t) + p(y, t)

2α(t)
(5)

1Naturally, different crossover operators lead to different p(x, y → z)
distributions. Since the theory presented in this paper applies to all, here we
will not provide a more detailed characterisation of this distribution.

where p(x, t) and p(y, t) represent the selection probabilities
for the parents at generation t if selected independently by
normal selection. This would lead to the equation

φ(z, t + 1) =
∑

x,y∈Ω

p(x, t) + p(y, t)
2α(t)

p(x, y → z). (6)

It is, however, immediately apparent that this form of se-
lection presents an unusual feature: p(x, y, t) may be non-
zero even if one of the parents, say y, is absent from the
population. This is because if, for example, p(y) = 0,
Equation (5) transforms into p(x, y, t) = p(x,t)

2α , which will
be non-zero whenever p(x, t) is non-zero.

We can correct this behaviour by modifying our definition
of linear selection. One way to achieve this is to ensure that
p(x, y, t) is zeroed whenever either x or y are not in the
population. This is what led to the definition of semi-linear
selection in Equation (2). There, δx(t) indicates whether or
not φ(x, t) is zero. Note that in many forms of selection
(such as fitness proportionate selection, tournament selection
and rank selection) p(x, t) is zero if and only if φ(x, t) is
zero, and, so, effectively δx(t) is also an indicator of whether
or not p(x, t) is zero. That is, non-greedy forms of selection
have the property p(x, t) = 0 ⇐⇒ φ(x, t) = 0. In all
forms of selection, however, φ(x, t) = 0 =⇒ p(x, t) = 0.
In other words, δx(t) = 0 =⇒ p(x, t) = 0. We will use
this property later in this section to simplify the evolution
equation for a GA under semi-linear selection and crossover.

For semi-linear selection we have

φ(z, t + 1) =
∑

x,y∈Ω

p(x, t) + p(y, t)
2α(t)

δx(t)δy(t)p(x, y → z)

(7)
Expanding we obtain

φ(z, t + 1) =
1

2α(t)
[

∑
x,y∈Ω

p(x, t)p(x, y → z)δx(t)δy(t)

+
∑

x,y∈Ω

p(y, t)δx(t)δy(t)p(x, y → z)]

(8)

With a suitable renaming of summation variables and gath-
ering of terms we then obtain

φ(z, t + 1) =
1

2α(t)

∑
x,y∈Ω

p(x, t)

[p(x, y → z) + p(y, x → z)]δx(t)δy(t)
(9)

Note that, for non-greedy selection, δx(t) = 0 whenever
p(x, t) = 0 and δx(t) = 1 whenever p(x, t) > 0. Therefore
δx(t) can be omitted from Equation (9). Also, note that if
crossover is symmetric,2 then p(x, y → z) = p(y, x → z).
So, in these fairly general conditions Equation (9) simplifies

2We obtain a symmetric crossover, if, for example, we select the parents
and then randomly choose which parent to consider as the first and which
as the second, or if we generate two offspring and then randomly select
which one to return.



to

φ(z, t + 1) =
1

α(t)

∑
x∈Ω

p(x, t)
∑
y∈Ω

p(x, y → z)δy(t) (10)

We are now in a position to compute the value of the
normalisation constant α(t). We start by summing both sides
of Equation 10 over all values of z in Ω obtaining∑
z∈Ω

φ(z, t + 1) =
∑
z∈Ω

1
α(t)

∑
x∈Ω

p(x, t)
∑
y∈Ω

p(x, y → z)δy(t)

(11)
which can be transformed into

1 =
1

α(t)

∑
x∈Ω

p(x, t)
∑
y∈Ω

δy(t)
∑
z∈Ω

p(x, y → z) (12)

since
∑

z∈Ω φ(z, t) = 1 for any t by definition. Note that∑
z∈Ω p(x, y → z) = 1 since crossover must always produce

some element of Ω irrespective of the choice of parents x
and y. So,

α(t) =
∑
x∈Ω

p(x, t)
∑
y∈Ω

δy(t) (13)

The two summations in this equation commute. Noting that∑
x∈Ω p(x, t) = 1 we then obtain

α(t) =
∑
y∈Ω

δy(t) (14)

That is α(t) is the number of types, i.e., distinct individuals,
in the population at generation t, which must not be confused
with the number of individuals in the population.

So, Equations (2) and (14) completely define linear selec-
tion, while the following equation describes the dynamics of
a system with linear selection and crossover:

φ(z, t + 1) =
∑
x∈Ω

p(x, t)
∑
y∈Ω

pδ(y, t)p(x, y → z) (15)

where

pδ(y, t) =
δy(t)∑

w∈Ω δw(t)
. (16)

Following similar calculations, for Equation 6 one can
prove that, for symmetric crossover,

α(t) = |Ω| (17)

and

φ(z, t + 1) =
∑
x∈Ω

p(x, t)
∑
y∈Ω

1
|Ω|

p(x, y → z) (18)

Similarly one can transform Equation (3), obtaining, for
symmetric crossover,

φ(z, t + 1) =
1

α(t)

∑
x,y∈Ω

F (x)p(x, y → z)φ(x, t)φ(y, t)

(19)

where
α(t) =

∑
x∈Ω

F (x)φ(x, t) (20)

So, effectively we have

φ(z, t + 1) =
∑
x∈Ω

p(x, t)
∑
y∈Ω

φ(y, t)p(x, y → z) (21)

where p(x, t) = F (x)φ(x)/
∑

x∈Ω F (x)φ(x, t), which is
effectively a form of fitness proportionate selection where
the function F is interpreted as a fitness function (although
F may be a complicated function of the actual fitness f ).

In the next section we study Equations (15), (18) and
(21), and compare them to the evolution equations for
standard selection with crossover, headless-chicken crossover
and mutation.

III. THEORETICAL COMPARISON WITH OTHER
OPERATORS

It is instructive to compare Equations (15) and (18) with
the evolution equations for a GA with standard selection
and crossover and for a GA with standard selection and
headless chicken crossover. In both cases, for simplicity we
will assume that genetic operators are applied with 100%
probability.

In normal selection each parent is selected independently
therefore p(x, y, t) = p(x, t)p(y, t), and, so, the infinite
population model for a selecto-recombinative generational
GA becomes

φ(z, t + 1) =
∑
x∈Ω

p(x, t)
∑
y∈Ω

p(y, t)p(x, y → z) (22)

If, instead the second parent is randomly drawn from the
population (as in Holland’s work), we have p(x, y, t) =
p(x, t)φ(y, t), and, so, the infinite population model for a
selecto-recombinative generational GA becomes

φ(z, t + 1) =
∑
x∈Ω

p(x, t)
∑
y∈Ω

φ(y, t)p(x, y → z) (23)

The evolution equation for a GA with standard selection
and headless chicken crossover was derived [10]. This is

φ(z, t + 1) =
∑
x∈Ω

p(x, t)
∑
y∈Ω

π(y, t)p(x, y → z) (24)

where π(y, t) is the probability of generating a random
individual of type y at generation t. Since normally the
algorithm used to initialise the population is also used to
generate the random parent in headless-chicken crossover,
in fact, π(y, t) is not a function of t. Also, in most GAs
the initialisation algorithm draws individuals randomly and
uniformly in Ω. So, π(y, t) = 1

|Ω| . Under these conditions
we then have

φ(z, t + 1) =
∑
x∈Ω

p(x, t)
∑
y∈Ω

1
|Ω|

p(x, y → z) (25)

Having described the infinite population model for normal
selection, Holland selection, and normal selection with head-
less chicken crossover (Eq. (22),(23) and (25), respectively)
we are now in the position to compare these equations to the
ones obtained in Section II.



It is easy to see that Equation (25) is identical to the
evolution equation for a GA under pure linear selection
(Equation (18)). That is, a GA with normal selection and
headless-chicken crossover is identical to a GA with pure-
linear selection and ordinary crossover. We can also see that
Equation (21) and Equation (23) are identical. However,
also the similarity between Equations (22) and (25) and
Equation (15) is striking, the only difference between these
equations really being whether pδ(y, t), p(y, t), φ(y, t) or
1
|Ω| is used. This allows us to better understand semi-linear
selection.

We can interpret semi-linear selection as a form of inde-
pendent selection, but one where the two parents are chosen
using different selection schemes: the first is selected with
any ordinary selection algorithm, leading to the term p(x, t)
in Equation (15); the second is independently selected with a
new form of selection, which leads to the term pδ(y, t). What
form of selection could this be? We note that if we selected
a type randomly and uniformly out of those present in the
population,3 each type would be selected with a probability
of 1 over the total number of types. However, this is exactly
what Equation (16) computes. So, linear selection corre-
sponds to selecting the first parent using ordinary selection
of individuals and the second using random selection of
types. Since this may be very counterintuitive, we provide
an explicit example below.

Consider a population with three individuals, A, B and C,
all of different types. So, α = 3. Let us further assume that
the selection probabilities of these individuals are: p(A) =
2
3 − ε, p(B) = 1

3 and p(C) = ε, where 0 < ε < 2
3 is a

constant. By applying Equation (2) with the given values of
p(A), p(B) and p(C) we obtain:

p (A,A) =
2
9
− ε

3

p (A,B) =
1
6
− ε

6

p (A,C) =
1
9

p (B,A) =
1
6
− ε

6

p (B,B) =
1
9

p (B,C) =
ε

6
+

1
18

p (C,A) =
1
9

p (C,B) =
ε

6
+

1
18

p (C,C) =
ε

3

If instead we used independent selection with standard se-
lection of the first parent and random selection on types for

3This is not the same thing as selecting a random individual from the
population, which would lead to a term of the form 1/M where M is the
population size.

the second, we would obtain:

p (A,A) =
2
9
− ε

3

p (A,B) =
2
9
− ε

3

p (A,C) =
2
9
− ε

3

p (B,A) =
1
9

p (B,B) =
1
9

p (B,C) =
1
9

p (C,A) =
ε

3
p (C,B) =

ε

3
p (C,C) =

ε

3
Some of these values are different from those obtained in the
case of semi-linear selection. This would seem to suggest that
the two forms of selection lead to different choices. However,
we must note that whenever crossover is symmetric, all
selection schemes where, for all pairs of parents x and y, the
sum p(x, y)+p(y, x) takes the same value behave exactly the
same, irrespective of how such value is split between p(x, y)
and p(y, x). Continuing our example, if we coarse grain over
the order in which parents are chosen we then obtain

p (A,B) + p (B,A) =
1
3
− ε

3

p (A,C) + p (C,A) =
2
9

p (B,C) + p (C,B) =
1
9

+
ε

3
for both semi-linear selection and the hybrid independent
selection, where the first parent is selected using an ordinary
selection scheme while the second is randomly selected from
the types in the population. This shows that with symmetric
operators the two schemes are equivalent.

The equivalence of semi-linear selection and our hybrid
independent selection gives us also a way of implementing
linear selection efficiently, without requiring the creation of a
population P 2 of all possible pairs of individuals suggested
in Section I. All we have to do to implement semi-linear
selection efficiently is simply not to use it and use the afore-
mentioned hybrid selection algorithm instead.

We notice the similarity between |Ω|, the number of types
in the search space, and the denominator of Equation (16),
α(t) =

∑
y∈Ω δy(t), which computes the number of types

in the population. Although it is unlikely that α(t) will ever
approach |Ω| in any realistic situation, in a large and diverse
population the selection of random types as second parents
to use in crossover leads to the introduction of considerable
variation in the offspring. In such conditions, semi-linear
selection effectively turns into pure-linear selection, and so
it turns crossover into a form of headless chicken crossover
(i.e., an adaptive macro mutation).



Furthermore, we can see from the comparison of the
dynamic equations of different models that, in terms of de-
gree of exploration of the search space, semi-linear selection
is somehow in between Holland’s selection and Headless
Chicken Crossover. In other words, the semi-linear selection
leads to a more exploratory search than Holland’s selection
but less exploratory than Headless Chicken Crossover. There-
fore, we might expect semi-linear selection to behave better
than normal selection or Holland’s selection in “difficult”
problems. In the next section we will experimentally corrob-
orate this conjecture.

IV. RESULTS

In this section we study the behaviour of linear selection
by performing real runs. Because pure linear selection with
crossover behaves exactly as standard selection with headless
chicken crossover, we will treat these two cases as one. So,
whenever we refer to linear selection in this section, we will
mean semi-linear selection.

We consider two problems, both are functions of unitation,
u, which represents the number of 1s in a string. The first
is the ZeroMax problem – a version of OneMax where the
objective is to maximise the number of zeros. The second
is the OneMix problem, recently introduced in [11]. This
function is a mixture of the OneMax problem and a ZeroMax
problem. Like these it is a function of unitation. For unitation
values bigger than `/2, where ` is the bit-string length, our
new function is just OneMax. For lower unitation values, it is
OneMax if u is odd, a scaled version of ZeroMax, otherwise.
The new function is formally defined as

f(u) =


(1 + a)(`/2− u) + `/2 if u is even

and u < `/2
u otherwise,

where a > 0. With this constraint we ensure that the global
optimum is the string 00 · · · 0.

We chose these problems because they have radically
different features. ZeroMax is an “easy” problem where both
crossover type and mutation type search operators can do
well, while the OneMix problem is known to be deceptive
[11] for a GA with crossover while it is not for a GA based
on mutation. Therefore, we would expect linear selection to
behave better on the OneMix problem than on ZeroMax.

The behaviour of a GA with linear selection and crossover
was compared with the behaviours of a GA with normal
selection and headless chicken crossover, a GA with normal
selection and homologous crossover, and a GA using Hol-
land’s selection and homologous crossover. The comparison
was performed using the ZeroMax problem and the following
version of OneMix

f(u) = 1.3`−

{
0.8`− 1.6u + `/2 if u is even and u < `/2
u otherwise

(26)
The following settings were used: chromosome length

` = 200, population size 500, 10 independents runs and the
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ZEROMAX PROBLEM HOLLAND SELECTION.

crossover probability was varied from 10% to 100% in steps
of 10% (i.e., 100%, 90% . . . 10%).

Figures (1), (2), (3), and (4) show the results for the Zero-
Max problem for the normal selection, Holland’s selection,
linear selection, and headless chicken crossover, respectively.
Only results for pxo = 10%, pxo = 50%, and pxo = 100%
are reported to avoid cluttering the figures.

From these figures one can see that the best results
for normal selection are obtained when pxo = 50% and
pxo = 100% (for these values of pxo the system exhibits
almost identical performance). It can also be noted that the
best performance for Holland’s selection is obtained when
pxo = 50%, while the best results for linear selection are
obtained when pxo = 50% and pxo = 10%. Finally, we can
see that normal selection with Headless Chicken crossover
with pxo = 100% and pxo = 50% makes virtually no
progress towards the best fitness values because of the high
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ZEROMAX PROBLEM HEADLESS CHICKEN CROSSOVER.

rate of crossover which effectively can be interpreted as a
high rate of mutation.

Comparing Figures (1), (2), (3), and (4) one can observe
that the best performance is obtained with normal selec-
tion while the worst performance is provided by headless
chicken crossover. It can be seen that linear selection with
pxo = 100% and Holland’s selection with pxo = 100%
have a similar behaviour. Furthermore, linear selection with
pxo = 50% and pxo = 10% and Holland’s selection with
pxo = 10% also exhibit similar performance.

So, the results obtained in these experiments fully con-
firm what we expected based on the theory presented in
Sections II and III.

For the OneMix problem the crossover probability was
varied from 100% to 20% in steps of 10% and from 20%
to 10% in steps of 2% (i.e. 20%, 18% . . . 10%). This was
done to find the value of pxo where there was the shift in
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convergence from the global optimum to the local optimum.
The results are shown in Figures (5), (6), (7), and (8).
To avoid cluttering the figures we only report the plots
corresponding to pxo = 90%, pxo = 50%, pxo = 30%,
pxo = 18%, pxo = 16%, pxo = 14%, pxo = 12%, and
pxo = 10%.

Figure 5 shows the results for normal selection. With
pxo = 10% the algorithm converges towards the optimal
unitation class. However, crossover rates pxo = 18%, pxo =
16%, and pxo = 14% make the algorithm stay around
unitation class 100 (the average unitation of the initial
population) showing almost no progress in the search. Rates
pxo > 18% have a tendency of driving the algorithm towards
unitation class 200 while values of pxo < 14% drive it
towards unitation class 0. The runs with pxo = 90% and
pxo = 10% present the highest tendencies towards u = 200
and u = 0, respectively.

The results for the Holland’s selection are presented in
Figure 6. It is observed that probabilities pxo = 10%,
pxo = 12%, pxo = 14%, and pxo = 18% drive the
algorithm towards unitation classes below 100 with pxo =
14% and pxo = 12% driving the algorithm towards the 0
unitation class. All other values of pxo make the algorithm
prefer unitations above 100 (i.e., near the deceptive (local)
optimum).

Figure 7 shows the results for linear selection. The rates
pxo = 50% and pxo = 12% provide the strongest drives
towards unitation classes 0 and 200, respectively. All runs
with pxo > 16% have a tendency towards the 200 unitation
class, while for pxo < 16% they tend to the 100 unitation
class.

Figure 8 shows the results for Headless Chicken Crossover.
Here, there is no crossover rate that drives the population
towards the 200 unitation class, but rates pxo ≥ 30% always
keep the population around the 100 unitation class, showing
no improvement in the search.
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ONEMIX PROBLEM HOLLAND SELECTION.
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ONEMIX PROBLEM LINEAR SELECTION.

Comparing Figures (5), (6), (7), and (8) one can see that
the best performance is obtained by linear selection with
pxo = 12% and that the worst given by normal selection with
pxo = 90%. It is also noted that the headless chicken runs
were never attracted to the local optimum which is consistent
with the fact that OneMax is deceptive for crossover.

Also, the GA with headless chicken crossover was at-
tracted towards the 0 unitation class for many more values
of pxo than any other algorithm. At the other extreme was
normal selection, for which there are only a few settings that
lead runs towards the 0 unitation class.

These results corroborate our conjecture that, in terms
of search exploration, linear selection would be somehow
in between Holland’s selection and normal selection with
Headless Chicken Crossover. These can be seen clearly
in the OneMix problem where linear selection led to the
global optimum more often than Holland selection, while
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ONEMIX PROBLEM HEADLESS CHICKEN CROSSOVER.

occasionally still being attracted to the local optimum. This
did not happen with Headless Chicken Crossover.

V. CONCLUSIONS

We have considered forms of selection where parents are
not selected independently. We studied theoretically three
such selections: pure linear selection, semi-linear selection
and Holland’s selection. We analysed in details their inter-
actions with with crossover and found, surprisingly, that, in
the presence of crossover, one such forms is very tightly
connected to a preexisting form of independent selection
(originally defined by Holland), while another is tightly
connected with with headless-chicken crossover.

One form of dependent selection, semi-linear selection,
where the parents are jointly selected with a probability
proportional to the average of their selection probabilities,
showed no exact connection with any pre-existing form of
selection. What is interesting about it is that, when used in
conjunction with crossover, in provides the GA with novel
features that are somehow in between those of a crossover-
based and a mutation-based GA with ordinary (independent)
selection. Interestingly, despite being a dependent form of
selection, semi-linear selection can also be implemented
efficiently as discussed in Section III.

Our theoretical analysis has been complemented by ex-
tensive experimental results which have fully confirmed the
predictions of the theory, including the fact that semi-linear
selection leads the GA to behave half-way between an
algorithm driven by crossover and one driven by mutation.
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