A hybrid approach to fast and accurate localization for legged robots

Renato Samperio, Huosheng Hu, Francisco Martín and Vicente Matellán

Robotica / Volume 26 / Issue 06 / November 2008, pp 817 - 830
DOI: 10.1017/S0263574708004414, Published online: 11 April 2008

Link to this article: http://journals.cambridge.org/abstract_S0263574708004414

How to cite this article:

Request Permissions : Click here
A hybrid approach to fast and accurate localization for legged robots
Renato Samperio†, Huosheng Hu†, Francisco Martín‡ and Vicente Matellán‡

†Department of Computing & Electronic Systems, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
‡Robotics Lab-GSyC, DITTE-ESCET-URJC, Universidad Rey Juan Carlos, Móstoles, Madrid, Spain

(Received in Final Form: February 11, 2008. First published online: April 11, 2008)

SUMMARY
This paper describes a hybrid approach to a fast and accurate localization method for legged robots based on Fuzzy-Markov (FM) and Extended Kalman Filters (EKF). Both FM and EKF techniques have been used in robot localization and exhibit different characteristics in terms of processing time, convergence, and accuracy. We propose a Fuzzy-Markov–Kalman (FM–EKF) localization method as a combined solution for a poor predictable platform such as Sony Aibo walking robots. The experimental results show the performance of EKF, FM, and FM-EKF in a localization task with simple movements, combined behaviors, and kidnapped situations. An overhead tracking system was adopted to provide a ground truth to verify the performance of the proposed method.

KEYWORDS: Legged robots; robot localisation; Extended Kalman filters; Fuzzy-Markov methods.

1. Introduction
In general, mobile robot localization is about estimating a robot pose, i.e., position and orientation, relative to its environment. It is one of the fundamental problems in mobile robotics. Nowadays, there are many localization techniques that have been developed for mobile robots, including extended Kalman filtering, particle filtering, grid-based Markov localization algorithms, etc. However, no single localization method is perfect for diversified real-world applications. It is necessary to combine some of them in practical applications according to the different sensors being used.

Up to now, there has been a number of research works on hybrid methods which integrate probabilistic multi-hypothesis and grid-based maps with EKF-based techniques. Some methodologies as indicated in the literature7,12 require an extensive computation but offer a reliable positioning system. By cooperating Markov into the localization process,6 EKF positioning can converge faster with an inaccurate grid observation. In general, Markov-based techniques and grid-based maps5 are classic approaches to robot localization and their computational cost is huge when the grid size in a map is small.3,10 Therefore, the Monte Carlo (MCL) technique has partially solved this problem,4,14,15 but still has difficulty handling environmental changes.13 As a fast approach, EKF maintains a continuous estimation of robot position, but cannot manage multi-hypothesis estimations.1

It should be noticed that traditional localization techniques such as EKF perform position tracking, i.e., integrating the previous position of the robot with the robot motion prediction and new perception information. In fact, they are computationally efficient, but may fail when the estimated position is far from the true one. Therefore, it is difficult for them to be used for legged robots that have very poor odometry, such as leg slippage and loss of balance. As shown in ref. [8], this paper compares two already existing localization methods (EKF and FM) for Sony legged robots in a highly dynamic environment, i.e., the RoboCup soccer domain. Then, we propose a hybrid localization method that is a merge of both EKF and FM approaches. Such a merge results in reduced inconsistencies, fuses inaccurate odometry data with visual data as well as having less computational cost. The proposed FM–EKF localization algorithm implements a fuzzy cell to speed up convergence and maintains an efficient localization. Subsequently, the performance of the proposed method was tested in three experimental comparisons: (i) simple movements along the pitch, (ii) localising and playing combined behaviors, and (c) kidnapping the robot.

The rest of the paper is organised as follows. Section 2 presents an observer model for the Sony AIBO legged robot. The theoretical background of the proposed localization methods is outlined in Section 3. The system configuration is described in Section 4. Section 5 presents some experimental results to show the performance of three different localization methods. Finally, a brief conclusion and further research work are given in Section 6.

2. Observer Design
To begin with, robot motion is described with a state vector which contains three variables, i.e., 2D position (x, y) and
Fig. 1. The proposed motion model in this research.

orientation (θ).

$$\begin{bmatrix}
 x_t \\
 y_t \\
 \theta_t
\end{bmatrix} = \begin{bmatrix}
 x_{t-1} \\
 y_{t-1} \\
 \theta_{t-1}
\end{bmatrix} + \begin{bmatrix}
 (u_t^{lin} + u_t^{lat})\cos\theta_{t-1} - (u_t^{rot} + u_t^{lin})\sin\theta_{t-1} \\
 (u_t^{lin} + u_t^{lat})\sin\theta_{t-1} + (u_t^{rot} + u_t^{lin})\cos\theta_{t-1}
\end{bmatrix}$$

where u_t^{lat}, u_t^{lin}, and u_t^{rot} are the lateral, linear, and rotational components of odometry, and w_t^{lat}, w_t^{lin}, and w_t^{rot} are the lateral, linear, and rotational components of odometry errors. $t - 1$ refers to the previous step time and t to the current step.

In general, state estimation is a weighted combination between noisy states in both priori and posterior estimations. Assuming that v is the measurement noise and w is the process noise. We have the measurement noise covariance matrix R and the process noise covariance matrix Q as follows:

$$R = E[vv']$$

$$Q = E[ww']$$

Note that measurement noise in matrix R indicates sensor errors and Q matrix is a confidence indicator for the current prediction, where uncertainty for each state estimation can increase or decrease. We adopt an odometry motion model, u_{t-1} as f shown in Fig. 1. Table I describes all variables for three dimensional (linear, lateral, and rotational) odometry information.

According to the measured experimental data, we can see that odometry system has a deviation of 30% on average as shown in Eq. (4). Therefore, applying transformation matrix W_t from Eq. (5), noise can be declared as robot uncertainty where θ is the robot heading.

$$Q_t = \begin{bmatrix}
 (0.3u_t^{lin})^2 & 0 & 0 \\
 0 & (0.3u_t^{rot})^2 & 0 \\
 0 & 0 & \frac{(u_t^{lin} + u_t^{rot})^2}{500}
\end{bmatrix}$$

$$W_t = \frac{\partial f}{\partial w} = \begin{bmatrix}
 \cos\theta_{t-1} & -\sin\theta_{t-1} & 0 \\
 \sin\theta_{t-1} & \cos\theta_{t-1} & 0 \\
 0 & 0 & 1
\end{bmatrix}$$

In addition, landmarks in the robot environment require notational representation for a feature vector f_i function in each i-th feature as in the following equation:

$$f(z_t) = \{f_t^1, f_t^2, \ldots\} = \left\{\begin{bmatrix}
 r_t^1 \\
 b_t^1 \\
 s_t^1
\end{bmatrix}, \begin{bmatrix}
 r_t^2 \\
 b_t^2 \\
 s_t^2
\end{bmatrix}, \ldots\right\}$$

where landmarks are detected by an onboard active camera in terms of range r_t^j and bearing b_t^j; a signature s_t^j is added to represent each landmark. We use a landmark measurement model defined by a feature-based map m, which consists of a list of signatures and location coordinates as follows:

$$m = \{m_1, m_2, \ldots\} = \{(m_{1,x}, m_{1,y}), (m_{2,x}, m_{2,y}), \ldots\}$$

where the i-th feature at time t corresponds to the j-th landmark detected by a robot whose pose is $x_t = (x, y, \theta)$. we use the model:

$$\begin{bmatrix}
 r_t^j(x, y, \theta) \\
 b_t^j(x, y, \theta) \\
 s_t^j(x, y, \theta)
\end{bmatrix} = \begin{bmatrix}
 \sqrt{(m_{j,x} - x)^2 + (m_{j,y} - y)^2} \\
 \tan^{-1}(m_{j,y} - y, m_{j,x} - x) - \theta \\
 s_t^j
\end{bmatrix}$$

Table I. Variable description for obtaining linear, lateral, and rotational odometry information.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\hat{x}_a</td>
<td>x axis of world coordinate system</td>
</tr>
<tr>
<td>\hat{y}_a</td>
<td>y axis of world coordinate system</td>
</tr>
<tr>
<td>x_{t-1}</td>
<td>previous robot x position in world coordinate system</td>
</tr>
<tr>
<td>y_{t-1}</td>
<td>previous robot y position in world coordinate system</td>
</tr>
<tr>
<td>θ_{t-1}</td>
<td>previous robot heading in world coordinate system</td>
</tr>
<tr>
<td>\hat{x}_t</td>
<td>current state x axis in robot coordinate system</td>
</tr>
<tr>
<td>\hat{y}_t</td>
<td>current state y axis in robot coordinate system</td>
</tr>
<tr>
<td>θ_t</td>
<td>current state heading in robot coordinate system</td>
</tr>
<tr>
<td>u_t^{lin}</td>
<td>linear odometry displacement in robot coordinate system</td>
</tr>
<tr>
<td>u_t^{rot}</td>
<td>rotational odometry displacement in robot coordinate system</td>
</tr>
<tr>
<td>w_{lin}</td>
<td>lateral component of odometry, and w_{rot} is the rotational component</td>
</tr>
<tr>
<td>w_{lat}</td>
<td>lateral component of odometry errors</td>
</tr>
<tr>
<td>w_{lin}</td>
<td>linear components of odometry errors</td>
</tr>
<tr>
<td>w_{rot}</td>
<td>rotational components of odometry errors</td>
</tr>
<tr>
<td>θ</td>
<td>robot heading</td>
</tr>
</tbody>
</table>
819

A hybrid approach to fast and accurate localization for legged robots

3. Theoretical Background

The localization process for an Aibo robot in the RoboCup domain has already achieved much progress. In this section we show an analysis for three popular localization methods such as FM, EKF, and FM–EKF. As in previous implementations, the FM method offers an acceptable performance and the EKF offers more research acceptance and maturation. However, a hybrid perspective of FM–EKF has a combined advantage from these two independent methods.

Figure 2 presents a comparison of distance errors in observations for both beacons and goals. As can be seen, distance errors in beacons are smaller than ones for goals. Additionally, goal sensing has an increment in error if they are closer or farther than 2500 mm. Meanwhile beacon error is proportional to distance to the robot.

As another example, Fig. 3 shows angle observation errors for beacons and goals respectively. Thus, angle observation error in beacons is generally less than that in goals and these errors increase when a robot is closer.

A. Fuzzy Markov method

We use an FM grid-based method, where a grid G_t contains a number of cells, and each grid element $G_t(x, y)$ holds a value of probability of a possible robot position in a range of $[0, 1]$. A fuzzy cell (fcell) is represented as a fuzzy trapezoid (Fig. 4) defined by a tuple $<\theta, \Delta, \alpha, h, b>$, where θ is robot orientation at the trapezoid centre with values in range of $[0, 2\pi]$; Δ is uncertainty in a robot orientation θ; h corresponds to fcell with a range of $[0, 1]$; α is the trapezoid slope and b is a correcting bias.

One of the most important aspects of a localization process based on Bayes filtering techniques is a phase cycle of prediction-observation-updating. If we look at such a phase cycle more closely, the prediction step adjusts movement information, meanwhile the observation step processes sensory information. Then, the updating step merges results from prediction and observation steps to obtain a new fuzzy grid map. Therefore, each step of the process sequence is described below:

(1) Prediction step. During this step, robot movements along grids are represented by a distribution which is continuously blurred. As is described in previous work, blurring is based on odometry information reducing occupancy for robot movement (i.e., Fig. 5(c)). Thus, the grid state G_t' is obtained by performing a translation and rotation of G_{t-1} state distribution according to motion \vec{m}. Subsequently, this odometry-based blurring, B_t, is uniformly done for incorporating uncertainty to a motion state.

$$G_t' = f(G_{t-1}, \vec{m}) \otimes B_t$$

(2) Observation step. In this step, each observed landmark i is represented as a vector \vec{r}_i, which includes both range and bearing information obtained by the visual module. For each \vec{r}_i, a grid map $S_{i,t}$ is built such that $S_{i,t}(x, y, \theta|\vec{r}_i)$ corresponds to robot position at (x, y, θ) given an observation \vec{r} at time t.

(3) Updating step. At this step, grid state G_t' obtained from the prediction step is merged with each state $S_{i,t}$ from the observation step. Afterwards, fuzzy intersection is done using a product operator as follows:

$$G_t = G_t' \times S_{t,1} \times S_{t,2} \times \cdots \times S_{t,n}$$

A simulated example of this process is shown in Fig. 5. The system starts with absolute uncertainty of robot pose, i.e., Fig. 5(a). Thereafter, the robot incorporates landmark and goal information where each grid state G_t is updated.
Fig. 5. This figure represents uncertainty in white colour from an absolute initialization (a) to a reduced area of robot pose in (f).

whenever an observation succeed, as is shown in Fig. 5(b). Subsequently, movements and observations of various landmarks enable the robot to localise, as shown in Fig. 5(c)–Fig. 5(f).

Since the performance of this method is judged by accuracy and computational cost, we selected a reasonable \(f_{cell} \) size of 20cm to balance two factors, i.e., for achieving good accuracy and less computing cost.
This localization method has the following advantages:

- Fast recovery from previous errors in the robot pose estimation.
- Fast recovery from kidnappings.
- Multi-hypothesis for robot pose \((x, y)\).
- Much faster than classical Markovian approaches.

However, its disadvantages, which we want to improve, are:

- Mono-hypothesis for orientation estimation.
- Very sensitive to sensor errors.
- False positives which make the method unstable in noisy conditions.
- Computational time increases dramatically.

B. Extended Kalman filter method

Techniques related to EKF have become one of the most popular tools for state estimation in robotics. Such approach contemplates a state vector for robot positioning which is related to environment perception and robot odometry. In this case, robot position is conformed by a vector \(s\) consisting of \((x, y, \theta)\) in which \((x, y)\) is robot position and \(\theta\) for orientation.

\[
s = \begin{pmatrix} x_{\text{robot}} \\ y_{\text{robot}} \\ \theta_{\text{robot}} \end{pmatrix}
\]

(11)

As a Bayesian filtering based method, EKF has prediction and update steps, described in detail below:

1. **Prediction step**. This phase uses robot odometry information as input for filtering the state vector. Current robot state \(s_t^-\) is affected by robot odometry information and its noise estimation in an error estimation \(P_t^-\). Initially, robot state is represented in:

\[
s_t^- = f(s_{t-1}, u_t, w_t)
\]

(12)

where the nonlinear function \(f\) relates the previous state \(s_{t-1}\), control input \(u_{t-1}\), and the process noise \(w_t\). Afterward, a covariance matrix \(P_t^-\) is used for representing errors in state estimation obtained at the previous step \(P_{t-1}^-\). Therefore, the covariance matrix is related with the previous robot state and process noise, i.e.,

\[
P_t^- = A_t P_{t-1} A_t^T + W_t Q_{t-1} W_t^T
\]

(13)

where \(A_t P_{t-1} A_t^T\) is a progression of \(P_{t-1}\) along a new movement and \(A_t\) is defined as follows:

\[
A_t = \frac{\partial f}{\partial s} = \begin{pmatrix} 1 & 0 & -u^{in}_t \cos \theta_t - u^{lin}_t \sin \theta_{t-1} \\ 0 & 1 & u^{in}_t \cos \theta_t - u^{lin}_t \sin \theta_{t-1} \\ 0 & 0 & 1 \end{pmatrix}
\]

(14)

and \(W_t Q_{t-1} W_t^T\) represents odometry noise, \(W_t\) is a Jacobian for motion state approximation and \(Q_t\) is a covariance matrix as follows:

\[
Q_t = E[w_t w_t^T]
\]

(15)

Note that the Sony AIBO robot may not be able to observe a beacon at each step. Therefore, the frequency of odometry calculation is higher than visual sensor measurements. For this reason, this step is executed independently as follows:

\[
s_t = s_t^- \quad P_t = P_t^-
\]

(16)

(17)

2. **Updating step**. At this step, sensor data and noise covariance \(P_t\) are used for obtaining a new state vector. Besides, the sensor model is updated using measured landmarks \(m_{1-6}(x, y)\). Thus, each \(z_i^t\) of \(i\) landmarks requires a vector \((r_i^t, \phi_i^t)\). In order to obtain an updated state, we use:

\[
s_t = s_{t-1} + K_t^i (z_i^t - \hat{z}_i^t) = s_{t-1} + K_t^i (z_i^t - h^i(s_{t-1}))
\]

(18)

where \(h^i(s_{t-1})\) is a predicted measurement calculated from the following non-linear functions:

\[
z_i^t = h^i(s_{t-1}) = \left(\sqrt{(m_{i,x}^t - s_{t-1,x})^2 + (m_{i,y}^t - s_{t-1,y})^2} \quad atan2(m_{i,x}^t - s_{t-1,x}, m_{i,y}^t - s_{t-1,y}) - s_{t-1,\theta}\right)
\]

(19)
The Kalman gain, K^i_t, is obtained from the next equation:

$$K^i_t = P_{t-1}(H_t^i)^T(S^i_t)^{-1}$$ \hspace{1cm} (20)

where S^i_t is uncertainty for each predicted measurement \hat{z}^i_t and is calculated as follows:

$$S^i_t = H_t^iP_{t-1}(H_t^i)^T + R_t^i$$ \hspace{1cm} (21)

and H_t^i describes how robot position is changing as follows:

$$H_t^i = \frac{\partial h^i(s_{t-1})}{\partial s_t}$$ \hspace{1cm} (22)

where R_t^i is measurement noise which was empirically obtained and P_t is calculated using the following equation:

$$P_t = (I - K^i_tH_t^i)P_{t-1}$$ \hspace{1cm} (23)

As not all \hat{z}^i_t values are obtained for every observation, z_t^i are correct references for each observed value and δ_t^i is a likelihood measurement obtained from Eq. (24) with a threshold value between 5 and 100, which varies based on localization quality.

$$\delta_t^i = (z_t^i - \hat{z}_t^i)^T(S_t^i)^{-1}(z_t^i - \hat{z}_t^i)$$ \hspace{1cm} (24)

C. FM–EKF method

We propose to merge FM and EKF algorithms in order to achieve computational efficiency, robustness, and reliability. In particular, the integrated FM–EKF is able to deal with noisy visual information and inaccurate odometry data in order to obtain the most reliable position from both approaches.

The hybrid procedure is fully described in Algorithm 1. Initially, the hybrid algorithm conditions require the FM algorithm to implement a f_{cell} grid size of (500–1000 mm) initialised in the field centre. Subsequently, a variable is iterated for controlling FM results. This variable is used for measuring robot positioning after being compared with the quality of EKF estimates. Then, localization quality indicates whenever EKF can be resetted in case the robot is lost or EKF position is out of FM range. Eventually, each algorithm step is realised depending on the execution of motion and perception models. Consequently, the localization process follows a predict-correct scheme.

Algorithm 1: FM and EKF combined methods algorithm

Initialise $position_{FM}$ over all pitch;
Initialise $position_{EKF}$ over all pitch;

while true do
 Predict $position_{FM}$ using motion model;
 Predict $position_{EKF}$ using motion model;
 Correct $position_{FM}$ using perception model;
 Correct $position_{EKF}$ using perception model;
 if $(quality(position_{FM}) \gg quality(position_{EKF}))$ then
 Initialise $position_{EKF}$ to $position_{FM}$
 end
 robot position $\leftarrow position_{EKF}$
end
The hybrid approach implements both FM and EKF methods for improving robot pose estimation. Even though they are processed independently, they use the same sensor and motion information to maintain independent robot pose estimation. Note that the FM localization is a robust solution for noisy information, but computational expensive and cannot operate in real time. Also, its accuracy is inversely proportional to the fcell size. In contrast, EKF is an efficient and accurate positioning method. Therefore, the hybrid method combines FM grid accuracy with EKF tracking efficiency, as shown in Fig. 6. The localization information flow is described in Fig. 7. Information from sensors (odometry and feature extraction system) is used by localization algorithms for obtaining robot positioning and orientation information.

4. System Overview

Our system consists of three asynchronously coordinated parts: an overhead tracking system, an Aibo legged robot, and human-robot control software. What is more, robot software contains an observer and a number of behavior modules as shown in Fig. 8. The observer is a perception module to collect environment information for navigation. It is organised as a set of possible states realised by a robot to interact within its environment. Robot behavior acts as a decision maker and is executed independently from the observer module with the same processing resources and information.

The legged robot used in our research is a Sony Aibo ERS-7 robot that has an embedded MIPS processor running at 576MHz, 64MB memory, a 350K-pixel colour camera, a pair of infrared sensors, and a LAN wireless IEEE 8011b card. The robot’s environment used in our experiments is a football pitch used in the RoboCup four legged league competition. The pitch contains four visual landmarks and two goals with distinctive colours, as well as white field lines, as shown in Fig. 9. Note that all the landmarks and soccer environment follow the 2006 RoboCup four Legged League rules.

An overhead tracking camera was used in our experiment in order to provide a ground truth for robot tracking movements. The overhead tracking system has a mean error information flow is described in Fig. 7. Information from sensors (odometry and feature extraction system) is used by localization algorithms for obtaining robot positioning and orientation information.

4. System Overview

Our system consists of three asynchronously coordinated parts: an overhead tracking system, an Aibo legged robot, and human-robot control software. What is more, robot software contains an observer and a number of behavior modules as shown in Fig. 8. The observer is a perception module to collect environment information for navigation. It is organised as a set of possible states realised by a robot to interact within its environment. Robot behavior acts as a decision maker and is executed independently from the observer module with the same processing resources and information.

The legged robot used in our research is a Sony Aibo ERS-7 robot that has an embedded MIPS processor running at 576MHz, 64MB memory, a 350K-pixel colour camera, a pair of infrared sensors, and a LAN wireless IEEE 8011b card. The robot’s environment used in our experiments is a football pitch used in the RoboCup four legged league competition. The pitch contains four visual landmarks and two goals with distinctive colours, as well as white field lines, as shown in Fig. 9. Note that all the landmarks and soccer environment follow the 2006 RoboCup four Legged League rules.

An overhead tracking camera was used in our experiment in order to provide a ground truth for robot tracking movements. The overhead tracking system has a mean error
of (72.4 mm, 60.0 mm) and an average standard deviation of (63.5 mm, 46.7 mm) for \(x\) and \(y\) coordinates.

5. Experimental Results
The experiments were carried out in three stages of work: (i) simple movements; (ii) combined behaviors; and (iii) kidnapped robot. Each experiment set is to show robot positioning abilities in a RoboCup environment. The total set of experiment updates were 15, with 14123 updates in total. In each experimental set, the robot poses estimated by EKF, FM and FM–EKF localization methods are compared with the ground truth generated by the overhead vision system. In addition, each experiment set is compared respectively within its processing time. Experimental sets are described below:

Fig. 11. Positioning errors during a walk along the pitch.

Fig. 12. Robot trajectories estimated by EKF, FM, FM–EKF and the overhead camera.
A hybrid approach to fast and accurate localization for legged robots

Fig. 13. Processing time per algorithm iteration during a walk along the pitch.

(1) **Simple Movements.** This stage includes straight and circular robot trajectories in forward and backward directions within the pitch.

(2) **Combined Behavior.** This stage is composed by a pair of high level behaviors. Our first experiment consists of reaching a predefined group of coordinated points along the pitch. Then, the second experiment is about playing alone and with another dog to obtain localization results during a long period.

Fig. 14. Orientation errors during reaching predefined points.
(3) **Kidnapped Robot**. This stage is realised randomly in sequences of kidnap time and pose. In each kidnap the objective is to obtain information about where the robot is and how fast it can localise again.

In the Simple Movement experiment set, the robot follows a trajectory in order to obtain a variety of visible points along the pitch. Figures 10 and 11 show angle and position errors respectively. Figure 12 presents the trajectories estimated by EKF, FM, FM–EKF methods and the overhead vision system. Figure 13 shows the processing time for EKF, FM, FM–EKF methods, in which the proposed FM–EKF method is faster than the FM method, but slower than the EKF method. As can be seen, during this experiment high peaks in angle or
distance error occur whenever position is different from that reported by the overhead vision system. This is caused by a lack of landmark perception.

For the Combined Behavior experiment we evaluate two dissimilar experiments: (a) robot reaching predefined points as accurately as possible and (b) a playing session for a robot to play a session alone and against an opponent. Figures 14 and 15 present orientation and position errors whenever the robot reaches predefined points. Figure 16 show the difference of robot trajectories estimated by FM–EKF and
overhead vision system. Figure 17 shows the processing time per algorithm iteration for EKF, FM, FM–EKF during the robot reaching some predefined points.

Similar to previous experiments, periods of landmark absence causes increasing error. From the performance perspective, EKF is the fastest localization method, FM–EKF is in the middle, and FM is the slowest one.

In the last experiment, the robot was randomly kidnapped in terms of time, position, and orientation. After the robot is manually deposited in a different pitch zone, its localization

Fig. 19. Positioning errors during a kidnapping sequence.

Fig. 20. Robot trajectories estimated by FM–EKF and the overhead camera.
A hybrid approach to fast and accurate localization for legged robots

performance is evaluated. Figures 18 and 19 show orientation and position errors during a kidnapping sequence. Figure 20 presents trajectories estimated by FM–EKF and overhead vision system. Figure 21 shows the processing time per iteration for three algorithms during reaching of predefined points. Results from kidnapped experiments show resetting transition from a local minimum to fast convergence within 3.23 s. Even EKF has the most efficient computation time, FM–EKF offers the most stable performance and is a most suitable method for a dynamic indoor environment.

6. Conclusions
This paper presents a novel hybrid approach to fast and accurate robot localization using an active vision platform. The proposed FM–EKF method integrates FM and EKF algorithms using the visual and odometry information from a legged robot. Experimental results show that the hybrid method offers a more stable performance and good localization accuracy for a legged robot which has noisy odometry information. Further research will focus on the reinforcement of the quality in observer mechanisms for odometry and visual perception, as well as the improvement of landmark recognition performance.

Acknowledgements
We would like to thank TeamChaos (http://www.teamchaos.es) for facilities and capabilities of their programming work and technical team from Department of Computing and Electronic Systems at Essex University (http://essexrobotics.essex.ac.uk), for their support and help in this research. Part of this research was also supported by a CONACyT (Mexican government) scholarship with reference number 178622 and by Spanish government grants DPI2004-07993-C03-01, DPI2004-07993-C03-02, and S-0505/DPI/0176 corresponding to Ditpa and Robocity 2030 projects respectively.

References