Landmark-based Navigation of Industrial Mobile Robots

Huosheng Hu and Dongbing Gu

Department of Computer Science,
University of Essex, Wivenhoe Park,
Colchester CO4 3SQ, England

Abstract

Landmark-based navigation of autonomous mobile robots or vehicles has been widely adopted in industry. Such a navigation strategy relies on identification and subsequent recognition of distinctive environment features or objects that are either known a priori or extracted dynamically. This process has inherent difficulties in practice due to sensor noise and environment uncertainty. This paper is to propose a navigation algorithm that simultaneously locates the robots and updates landmarks in a manufacturing environment. A key issue being addressed is how to improve the localization accuracy for mobile robots in a continuous operation, in which the Kalman filter algorithm is adopted to integrate odometry data with scanner data to achieve the required robustness and accuracy. The Kohonen neural networks have been used to recognize landmarks using scanner data in order to initialize and recalibrate the robot position by means of triangulation when necessary.

Key words: Mobile robots, Kalman Filter, Localization, Landmarks, Neural Networks.

1. Introduction

Autonomous mobile robots need the capability to explore and navigate in dynamic or unknown environments in order to be useful in a wide range of industrial applications. In the past two decades, a number of different approaches have been proposed to develop flexible and efficient navigation systems for manufacturing industry, based on different sensor technologies such as odometry, laser scanners, inertial sensors, gyro, sonar and vision (Arkin and Murphy, 1990) (Hu et al., 1997). However, since there is huge uncertainty in the real world and no single sensor is perfect, it remains a great challenge today to build robust and intelligent navigation systems for mobile robots to operate in the real world.

In general, the methods for locating mobile robots in the real world are divided as two categories: relative positioning and absolute positioning. In relative positioning, odometry (or dead reckoning) and inertial navigation (Barshan and Durrant-Whyte, 1995) are commonly used to calculate the robot positions from a start reference point at a high updating rate. As we know that odometry is one of most popular internal sensors for position estimation because of its easy to use in real time. However the disadvantage of odometry is that it has an unbounded accumulation of errors. Therefore, frequent correction made from other sensors becomes necessary (Borenstain, 1994). In contrast, absolute positioning relies on detecting and recognizing different features in the robot environment in order for a
mobile robot to reach a destination and implement specified tasks. These environment features are normally divided as two types: one is feature-based such as active beacons (Kleeman, 1992), artificial (Durrant-Whyte, 1996) and natural (Leonard and Durrant-Whyte, 1991)(Madsen and Anderson, 1998) landmarks, and another one is map-based such as different geometrical models (Elfes, 1987) (Thrun and Bucken, 1996). Among these, natural landmark navigation is flexible as no explicit artificial landmarks are needed, but may not function well when landmarks are sparse and often the environment must be known a priori. Although artificial landmark and active beacon approach are not flexible, the ability to find landmarks is enhanced and process of map building is simplified.

To make the use of mobile robots in the daily deployment feasible, it is necessary to reach a tradeoff between costs and benefits. Often, this prevents the use of expensive sensors such as vision systems and Global Positioning Systems (GPSs) in favor of cheaper sensing devices such as odometry and laser, and calls for efficient algorithms that can guarantee real-time performance in the presence of insufficient or conflicting data. Therefore, the focus of this paper is on the use of a laser scanner and artificial landmarks for the position estimation of a mobile robot. The natural landmarks are also considered for its extension, which is more flexible navigation method.

The rest of the paper is structured as follows. Section 2 presents a navigation system that can locate the robot and update landmarks in the robot internal model concurrently. A navigation system based-on a rotating laser scanner and artificial landmarks is described in section 3 in which a triangulation method for calibrating the mobile robot position is also presented. Then the Kohonen neural networks are proposed in section 4 for the mobile robot to recognize the landmarks automatically in order to initialize and recalibrate its position by means of triangulation. In section 5 the localization system based on the Extended Kalman Filter (EKF) is presented, which integrates date from both scanner and odometry. Experiment results are given in section 6 to show its applicability where artificial landmarks are considered. Finally, a brief summary is given in section 7.

2. Concurrent localization and map building

The localization system based on the laser scanner and artificial landmarks is a promising absolute positioning technique in terms of performance and cost (McGillem and Rappaport, 1998). Using this technology, the coordinates of artificial landmarks are prestored into an environment map. When its operation, the robot uses its on-board laser sensor to scan these artificial landmarks in its surrounding and measure the bearing relative to each of them (Astrom, 1992). Then the position estimation of the mobile robot is normally calculated by using two distinctive methods: triangulation (Skiwes and Lumesly, 1994) and Kalman filtering algorithm (Durrant-Whyte, 1996).

In general, there are two problems in the system, which affect the accuracy of the position estimation. The first problem is that the navigation system can not work well when some artificial landmarks accidentally change their positions. If natural landmarks are used in the navigation process, updating
map is necessary in order to register them into the map during operation. The second problem is that laser measurements are noisy when the robot moves on uneven floor surface. Therefore the accuracy of robot positioning degrades gradually, and sometime becomes unacceptable during a continuous operation. Therefore, re-calibration is needed from time to time and it becomes a burden for the real world application.

To effectively solve these problems, we propose a navigation algorithm that is able to

- Initialize its position when necessary,
- Update its internal landmark map when the position of landmarks is changed, and
- Localize the robot position by integrating data from optical encoders, laser scanner and sonar.

Figure 1 shows the block diagram of our navigation system that is able to implement concurrent localization and map building automatically. It is a close-loop navigation process for position initialization, position updating and map building.

![Figure 1 Concurrent localization and map building](image)

The system consists of three parts: an initialization part, an EKF part, and a map-building part. The initialization part includes a triangulation algorithm, which is based on angle measurements from the laser scanner. Kohonen Neural Networks are used here to identify the landmarks being detected and achieve correct match between sensor data and the real world. The EKF part aims to fuse measuring data from different sensors, and reduce individual sensor uncertainties. More details are presented in section 4. In contrast, the task of the map building is to update and maintain the internal world model of the mobile robot. A recursive least square algorithm is adopted to optimize the landmark position during operation of the mobile robot. The key idea is to optimize the internal landmark model during the robot operation and add any natural landmark that is consistently detected by the laser scanner into
the localization process. The choice of the least square criteria is of course based on assumption that measurement errors are Gaussian distribution.

3. Navigation system

3.1 Laser scanner and artificial landmarks

Research here is based on an industrial robotic system that uses artificial landmarks for localization. A rotating laser scanner is used to measure the angle between the robot base line and the beam line from either the leading or the falling edge of artificial landmarks in the horizontal plane. As shown in figure 2, the laser scanner is situated on the top of the physical center of the robot, scanned 360° in azimuth up to 50m range at a constant speed of 2Hz. Note that an infrared laser beam (870nm) from a HeNe laser diode emits energy of 0.5 mw, which is eye safe. As can be seen, there are 6 landmarks in this environment, namely $B_1, B_2, ..., B_6$.

The landmarks are currently in the form of single strip for easy detection at a long distance, instead of traditional bar-coded. All landmarks have an identical size of 50cm in length and 10cm in width. The positions of landmarks are surveyed in advance and pre-stored into the robot memory in a format of the looking-up table, represented by the coordinates in the world frame:

$$\mathcal{R} = [B_1, ..., B_i, ..., B_N] = [(b_{x_1}, b_{y_1}), ..., (b_{x_i}, b_{y_i}),...]$$ \hspace{1cm} (1)

where (b_{x_i}, b_{y_i}) is the coordinates of the i^{th} landmarks and N is the total number of landmarks in use.

These landmarks can return strong reflective signals to the scanner, i.e. the area inside dotted lines in figure 2. The reflected light from these landmarks is measured by a photodetector inside the scanner. The scanner outputs the relative angles (with respect to the robot frame) measured by the scanner encoder at the falling edge of each landmark. The measurement variance would increase when the mobile robot moves around. This is because the vibration of the laser scanner would appear when the floor surface is not smooth.
3.2 Triangulation algorithm

In the case of a stationary robot, the laser scanner senses all six landmarks, as shown in Figure 3, from a single location continuously. Then these data can be used to calculate the initial position and heading of the robot by the triangulation algorithms proposed in (Madsen and Anderson, 1998) (McGillem and Rappaport, 1988). There are two ways to do triangulation. Firstly, triangulation can be recursively implemented by choosing three landmarks from those 6 landmarks in figure 3 in turn when the mobile robot is stationary. It is actually identical to the "3 point problem" in land surveying. The laser scanner detects the falling edges of three landmarks and in turn provides three angle measurements, denoted by β_i ($i = 1,2,3$):

$$\beta_i = \tan^{-1}\frac{b_{yi} - y_i}{b_{xi} - x_i} - \theta$$ \hspace{1cm} (2)

where θ is the robot orientation, (b_{xi}, b_{yi}) are the coordinates of the landmark β_i and (x_i, y_i) are the coordinates of the laser scanner in a global frame.

Based on the trigonometric identity, the equations for calculating the robot position and orientation are easy to derive from the equation (2). More details can be seen from (Skiwes and Lumesly, 1994). There are two problems in this triangulation process. Firstly, the triangulation algorithm is normally sensitive to the positions of three landmarks being used. When three targets are in an optimal position (about 120 degrees apart), the results are very accurate. Otherwise, the robot position and orientation have big variances with respect to an optimal value (Madsen and Anderson, 1998). Secondly, it is very difficult to identify which landmark has been detected if all landmarks are identical. Mismatch is more likely to happen in practice when obstacles obscure one or more landmarks in the robot surroundings.

Alternatively, we can use all landmarks to make a least square solution with redundant observations so that the individual solutions do not depend on the specific choice of the landmarks. This solution is non-
linear, and however, the equations can readily be linearized and used with the standard least square algorithm. The advantage of this approach is that the redundant observations can be used to check and, hopefully, eliminate blunders in the observation automatically (misidentification of the targets, etc.) This approach can readily be automated and is, indeed, very popular in surveying. But it needs more computation time comparing with the first approach.

4. Kohonen neural network for landmark detection

Since the laser scanner can only measure the angles to the different landmarks, and cannot distinguish one landmark from another, a key problem is how to determine the correspondence between the measured angle and the landmark (Astrom, 1992). Therefore, the initialization of the robot position is normally done manually. Also, re-calibration is done manually when the mobile robot gets lost. This is not convenient for real-world applications. It is necessary to find a feasible way to initialize the position of a mobile robot automatically, which is addressed in this section.

4.1 Kohonen neural networks

Kohonen neural networks have a structure arranged in a linear or planar manner, guided in particular by finding in neurobiology. Their adjacent neurons react to similar stimuli that come from the natural environment and are perceived by the sense organs. This algorithm is an unsupervised technique, and also called self-organizing feature map (Fukushima et al., 1983). When the algorithm has converged, the prototype vectors corresponding to nearby points on the feature map grid have nearby locations in input space. It has been used in the self-localization process for a mobile robot (Janet et al., 1995).

The Kohonen neural networks are adopted here to recognize the landmarks using the measurements of the laser scanner in order to provide landmark's co-ordinates for triangulation. The measurements of the laser scanner are the stimuli that will be mapped onto a two-dimensional topological structure in the network. The operating environment of our robot is divided into 30*30 grid, geometrically to represent the proposed network’s nodes. There are six input patterns during scanning of the laser scanner at each grid. Figure 4 is a schematic diagram for the Kohonen neural network. The inputs for the network are chosen as the angles of two landmarks for eliminating the effect of the robot's heading on the neural network, i.e.

$$\alpha_i = \beta_{i+1} - \beta_i$$

So, there are five inputs in the network and six input patterns for six landmarks. The robot can get one of the six input patterns during each scanning circle at each grid. We built up six networks to correspond to the six input patterns. During training stage, six networks are trained according to the six input patterns from laser scanner located in different grids respectively. When the neural networks mature, the input patterns can be recognized by the corresponding network that has minimum summary of the Euclidean distance between the network's weights and the input pattern.
4.2 Training the network

The Winner-Take-All learning algorithm is adopted here to train the parameters for the Kohonen neural networks to locate the robot. Assume that the network weights are W_{ij}, and the input data is $A = \{a_i\}$, where $i=1,2,\ldots,5$, $j=1,2,\ldots,30$ for six landmarks situation in this research. The winner node W_N is determined by

$$\|A - W_N\| = \min_{i,j} \|A - W_{ij}\|$$ \hspace{1cm} (4)

The winner node and its neighbors are updated by

$$W_n(k+1) = W_n(k) + \eta \epsilon (A - W_n), \quad n \in N_\epsilon$$ \hspace{1cm} (5)

where ϵ is the epoch of the learning, η is the learning rate parameter and N_ϵ is the neighborhood size at the given epoch.

The learning rate and the neighborhood size are adapted with the epoch as follows

$$\eta = \eta_0 - \eta f \epsilon$$ \hspace{1cm} (6)

$$N_\epsilon = \begin{cases} 5 & \epsilon < \frac{1}{2} \epsilon_{\text{max}} \\ 3 & \frac{1}{4} \epsilon_{\text{max}} < \epsilon < \frac{1}{2} \epsilon_{\text{max}} \\ 1 & \epsilon < \frac{1}{4} \epsilon_{\text{max}} \end{cases}$$ \hspace{1cm} (7)

where η_0 is the initial rate, η_f is the final rate and ϵ_{max} is the maximum epoch.

4.3 Recall

After training, there are six mature Kohonen neural networks for six possible input patterns. Recall procedures are as follows:
1) To get a measurement data \(A = \{a_i\} \) from the laser scanner.

2) To find the winner node \(W_k \) for the \(k'th \) Kohonen neural network.

3) To calculate the Euclidean distances between the measurement data \(A = \{a_i\} \) and the weight of the winner node \(W_k \).

\[
D_k = \| A - W_k \|
\] (8)

4) To find the minimum Euclidean distance among \(D_k \) \(\{k = 1,2,...,6\} \).

\[
D_{\text{min}} = \min_k \{D_k\}
\] (9)

5) To obtain the winner network to which the input pattern is corresponding.

By the input pattern, the robot actually knows the beacon's coordination. The self-localization can then be done by triangulation. Table 1 presents the recognized results by the neural network with parameters \(\eta_0 = 0.5 \) and \(\eta_f = 0.01 \). It shows that the neural network can properly recognize the landmarks after 1000 times training.

Table 1 Testing results

<table>
<thead>
<tr>
<th>EPOCH</th>
<th>The Number of Input Data</th>
<th>The Number of Correct Recognition</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>87</td>
</tr>
<tr>
<td>1000</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>94</td>
</tr>
</tbody>
</table>

5. Kalman filter based navigation algorithm

The triangulation algorithm being used now is difficult to implement when the robot moves around since it is necessary to compensate the time frame since each of three landmarks is detected at different robot positions. Skewis and Lumelsky proposed a triangulation algorithm to attack this problem (Skiews and Lumelsky, 1994). However, there was no satisfactory result being obtained after the algorithm was tested. This is mainly due to the following reasons:

- Each of landmarks is in a single strip and not encoded, i.e. indistinguishable one another.
- Noisy readings come from the laser scanner as some angle measurements are caused by random objects.
- In general, the robot environment is non-convex. Therefore, not all landmarks can be seen by the laser scanner. Moreover some landmarks may be obscured by dynamic objects such as humans and other robots.
Therefore, the Extended Kalman Filter (EKF) has been used in the localization process (Leonard and Durrant-Whyte, 1991), which is addressed here. The Kalman filter algorithm is a natural choice for robot localisation since it provides a convenient way to fuse the data from multiple sensors, e.g. the laser scanner and odometry in this work. However, it normally requires a linear dynamic model and a linear output model. However, in this research, both models are nonlinear as follows:

\[
x(k + 1) = f(x(k), u(k)) + w(k) \tag{10}
\]

\[
z(k + 1) = h(B_i, x(k)) + v(k) \tag{11}
\]

where \(f(x(k), u(k)) \) is the nonlinear state transition function of the robot. \(w(k) \sim N(0, Q(k)) \) indicates a Gaussian noise with zero mean and covariance \(Q(k) \). \(h(B_i, x(k)) \) is the nonlinear observation model and \(v(k) \) is Gaussian noise with zero mean and covariance \(R(k) \).

Figure 5 Experimental mobile robot

The control vector is calculated by two optical encoders at each cycle time \(k \):

\[
u(k) = [\Delta d, \Delta \theta]^T \tag{12}
\]

and the state transition function of the robot is

\[
f(x(k), u(k)) = \begin{bmatrix} x(k) + \Delta d \cos \theta \\ y(k) + \Delta d \sin \theta \\ \theta(k) + \Delta \theta \end{bmatrix} \tag{13}
\]

For the laser scanner, the observation model is

\[
h(B_i, x(k)) = \tan^{-1} \frac{b_{si} - y(k)}{b_{si} - x(k)} - \theta(k) \tag{14}
\]
Since the model (10) and (11) are nonlinear, the EKF must be used here to integrate the laser measurements and readings from optical encoders. Note that the EKF is recursively implemented as follows:

Step 1: Prediction -- predict the next position of the robot using odometry

\[
x(k + 1/k) = f(x(k), u(k)) \tag{15}
\]

\[
P(k + 1/k) = \nabla f P(k / k) \nabla f^T + Q(k) \tag{16}
\]

where \(\nabla f \) is the Jacobean matrix of the transition function, and is obtained by linearization

\[
\nabla f = \begin{bmatrix}
1 & 0 & -\Delta d(k) \sin \theta(k) \\
0 & 1 & \Delta d(k) \cos \theta(k) \\
0 & 0 & 1
\end{bmatrix} \tag{17}
\]

Step 2: Observation -- make actual measurement

The measurement of the laser scanner is

\[
z(k + 1) = h(B_i, x(k)) \tag{18}
\]

The predicted angle measurement is

\[
\hat{z}(k + 1) = h(B_i, \hat{x}(k + 1/k)) \tag{19}
\]

Step 3: Matching -- compare real measurement with the predicted measurement

To calculate the innovation, then use

\[
v(k + 1) = z(k + 1) - \hat{z}(k + 1) \tag{20}
\]

The innovation covariance is:

\[
S(k + 1) = \nabla h P(k + 1/k) \nabla h^T + R(k + 1) \tag{21}
\]

where \(\nabla B \) is the Jacobean matrix of the measurement function:

\[
\nabla h = \begin{bmatrix}
\frac{\partial h}{\partial x}, & \frac{\partial h}{\partial y}, & -1
\end{bmatrix} \tag{22}
\]

For each measurement, a validation gate is used to decide whether it is a match or not:

\[
v(k + 1)S(k + 1)v^T(k + 1) \leq G \tag{23}
\]

If it is true, the current measurement is accepted. Otherwise, it is disregarded.

Step 4: Updating -- correct the prediction error from odometry readings

The filter gain is updated by:

\[
W(k + 1) = P(k + 1/k) \nabla h^T S^{-1}(k + 1) \tag{24}
\]

The robot state is then calculated by:

\[
x(k + 1/k + 1) = \hat{x}(k + 1/k) + W(k + 1)v(k + 1) \tag{25}
\]

The covariance is updated by:

\[
P(k + 1/k + 1) = P(k + 1/k) - W(k + 1)S(k + 1)W^T(k + 1) \tag{26}
\]
Step 5: Return to Step 1 to recursively implement four steps above.

The algorithm is essentially very simple although it hides some very useful features. It produces the estimate of the current robot position at each cycle by integrating odometry data with only one angle measurement from the laser scanner. Recursively, it combines every new measurement with measurements made in the past to estimate the robot position, or "make a compromise". This can be seen as a pseudo "triangulation" technique in a dynamic sense.

6. Experimental results

The proposed algorithm was implemented in our car-like mobile robot (Hu and Brady, 1997). As shown in figure 5, the mobile robot has four wheels with pneumatic tyres, measuring 100cm (length) x 60cm (width) x 120cm (height). It has a weight of 100kg and a maximum speed of 1m/s. Two front wheels serve for steering and two rear wheels serve for traction. Incremental encoders (two 500 count/revolution) are fixed onto two rear wheels via 3:1 ratio pulley and belts. More detailed configuration can be seen from figure 6.

![Figure 7 Block diagram of the motion controller](image_url)

Figure 7 shows the block diagram of the motion controller used in the mobile robot. Note that gyro and inertial sensors have not been implemented in this research. The trajectory planner is in charge of generating a continuous-curvature trajectory for the robot to travel (Gu et al., 1997). The path controller is to keep the robot on the planned path using either a GPC control algorithm (Hu et al., 1997) or a PID control algorithm (Gu et al., 1997). It generates the speed and steering demands to low-level controllers based on errors between the desired trajectory and the actual trajectory estimated by the EKF. A PID control algorithm has been used in the drive and steering controllers for maintaining stable speed and steering angle.
Figure 8 navigating a close-loop route inside building

Figure 9 navigating a long route outside
Figure 8 presents the results gathered from indoor navigation of our robot that is commended to follow a close-loop route. There are three sets of data, namely a planned trajectory, a trajectory calculated from odometry and a trajectory estimated by the EKF. As can be seen, the trajectory produced by odometry deviated further than the one generated by the EKF.

Figure 9 shows that the robot traveled along a close-loop route planned by the trajectory planner. Both odometry data and the EKF data look very close to the planned trajectory since the trajectory plotting is scaled down too much. In fact, the odometry data will deviate further away from the desired trajectory if the mobile robot travels continuously.

7. Conclusions

This paper addresses the problem of landmark-based localization of mobile robots operated in industry. A navigation system that simultaneously locates the robots and updates landmarks in a dynamic environment is proposed. To improve the localization accuracy for mobile robots in a continuous operation, the EKF has been adopted in the navigation process. Both artificial and natural landmarks are considered in the algorithm in order to provide a useful solution towards real-world applications. A Kohonen neural network based algorithm is proposed in the paper to enable mobile robots to initialize their positions autonomously and re-calibrate their positions in case they get lost. The experiment results are presented to show its applicability. The proposed navigation algorithm has potential applications for service robots in home, office and hospitals. It can also be used for outdoor beacon-based navigation such as GPS navigation systems.

References

