An analysis of total correctness refinement models for partial relation semantics II

MOSHE DEUTSCH, MARTIN C. HENSON, Department of Computer Science, University of Essex, UK

Abstract
This is the second in a series of papers devoted to the thorough investigation of (total correctness) refinement based on an underlying partial relational model. This paper investigates operation refinement and data-refinement based on a weakest precondition interpretation for specifications whose semantics is given by partial relations. We consider three refinement theories based on a weakest precondition interpretation for partial relation semantics: an operation refinement theory, and theories characterising data-refinement with forward and backward simulations. We show that each of these is equivalent to a (corresponding) model-theoretic refinement theory that are based on the standard approach involving relational completion operators. In addition, we demonstrate that each one of the three is also equivalent to a (corresponding) proof-theoretic notion of refinement. Finally, we provide a single weakest precondition data-refinement theory which is complete for data-refinement.

1 Introduction
This paper investigates total correctness\(^1\) operation refinement and data-refinement based on a weakest precondition interpretation for specifications whose semantics is given by partial relations. The most well-known example of such a semantics is that for Z, in which schemas denote sets of bindings, establishing a partial relation between before and after states.

We consider three refinement theories based on a weakest precondition interpretation for partial relation semantics: an operation refinement theory, a theory characterising data-refinement with forward simulation and a theory characterising data-refinement with backward simulation. We show that each of these is equivalent to a (corresponding) model-theoretic refinement theory based on the standard approach involving relational completion operators (discussed in, for example, [39, 10] and investigated in detail in [11, 12]). In addition, we demonstrate that each one of them is also equivalent to a (corresponding) proof-theoretic notion characterising refinement in a very natural manner. This serves to illuminate not only the weakest precondition approach for refinement but also the standard model-theoretic account based on relations. In particular we wish to answer a basic question concerning weakest precondition data-refinement based on partial relation semantics: how do simulations combine with postconditions? Our answers lead to a single definition of weakest precondition data-refinement which is complete for data-refinement in the general sense.

We begin by developing a weakest precondition interpretation for operations (section 2). As in [26, 27], this is based directly on an underlying partial relation semantics.

\(^1\)Now that we have established that we are dealing with total correctness, we will drop this qualification: unless we specify otherwise, we are interested only in total correctness refinement.
We then introduce an operation refinement theory based on this interpretation and prove that it is equivalent to two other characterisations of refinement (section 3). The first is a model-theoretic notion based on the relational completion of the underlying partial semantics (see appendix B). This is sometimes called the lifted-totalisation and involves an additional distinguished element called bottom and written \bot. The second characterisation of refinement is purely proof-theoretic and captures refinement directly in terms of the language, the relationship between the data types involved, and the concept of precondition. It is a more abstract, less constructive notion and does not involve the introduction of either an auxiliary semantics, nor the introduction of an auxiliary element.

We then introduce the notion of data simulation (underlying the forward and backward simulation data-refinement techniques) and the lifted simulations used in model-theoretic data-refinement (section 4). These lay the foundation for an investigation of data-refinement in sections 5 and 6 which generalises of the investigation of section 3 to forward and backward simulation data-refinement (respectively). We define, in each case, a refinement theory founded on the weakest precondition semantics and demonstrate that each is equivalent to an appropriate model-theoretic and proof-theoretic data-refinement characterisation. This leads automatically to a definition of weakest precondition data-refinement which is complete for data refinement in general.

Our investigation takes place in \mathcal{Z}_C, the logic for Z reported in [24] and a simple conservative extension \mathcal{Z}_C^\bot [11] which incorporates \bot into the types of \mathcal{Z}_C (we summarise this, and additional notational conventions, for convenience in appendix A). This allows us to work with Z schemas as easily as with abstract relations and therefore to make an explicit link with the most well-known specification language which is based on partial relation semantics. Having said this, it should be noted that nothing we show here is specifically confined to Z: it is merely a convenient linguistic vehicle for state-based specification.

We employ a novel technique of rendering all the theories of refinement that we consider as sets of introduction and elimination rules. This leads to a uniform and simple method for proving the various equivalence results in the sequel. It contrasts with the more semantic techniques employed in [7]. We shall have more to say about this in section 3.4.

2 Weakest precondition semantics

2.1 Context

The notion of weakest precondition was introduced by Dijkstra [13], further evolved in [14] and used as an underlying semantics for a variety of programming languages (e.g. [18] and [21]). It was also adopted as the elementary semantics for specification statements [30] which underly refinement calculus as a unified language for developing programs from specifications e.g. [31]. Work on a weakest precondition semantics for Z was undertaken in [4, 5] and was developed for the purpose of supporting on ZRC: linking Z with refinement calculus e.g. [6]. This framework is founded on predicate transformers and compared with, rather than based on, the relational semantics underlying Z. Josephs [26] developed a weakest precondition semantics for operation schemas based directly on the partial relation semantics for Z. Operation refinement
An analysis of total correctness refinement models for partial relation semantics II

and data-refinement (the forward simulation case) in this framework are discussed in [26] and [27] (respectively).

In this section, we develop a weakest precondition interpretation for operation schemas in $\mathbb{Z}C$. Following [26, 27], our interpretation is based on the relational semantics of \mathbb{Z}, rather than predicate transformers as used in [4, 5]. We generalise Joseph’s work by introducing both operation refinement and (forward and backward simulation) data-refinement theories based on this interpretation and also by investigating their relationship with other refinement theories, including some introduced in our earlier work [11, 12]. This is our answer to Dijkstra and Scholten [14, p.126], who favour predicate transformers over the relational approach: “either no one trying to apply the relational calculus in this area mastered it well enough, or ... the relational calculus needs a few notational revisions before it can be considered a workable tool”. One of the aims of the series of papers, of which this is the second, that we are preparing is to thoroughly investigate the relational approach, both in its relationship to the predicate transformer/ weakest precondition approach and in terms of its expressive power.

2.2 Technical preliminaries

We begin by introducing a notion of postcondition to complement the standard idea of preconditions (see appendix A, section A.2).

Definition 2.1

$$Post \ U \ z_0 = df \ \{ z'_1 \mid z_0 \star z'_1 \in U \}$$

Note that this introduces a set, rather than a predicate.

Proposition 2.2

The following introduction and elimination rules are derivable for postcondition:

$$\frac{t_0 \star t'_1 \in U \ \ \ \ t'_1 \in Post \ U \ t_0} {t'_1 \in Post \ U \ t_0} \hspace{1cm} (Post^+)$$

$$\frac{t'_1 \in Post \ U \ t_0 \ \ \ \ t_0 \star t'_1 \in U} {t \in wp \ U \ C} \hspace{1cm} (Post^-)$$

With this in place we can introduce the weakest precondition interpretation of an operation schema. Again, the specified postcondition (C in the definition below) is expressed as a set rather than as a predicate.

Definition 2.3

$$wp \ U \ C = df \ \{ z \mid Pre \ U \ z \land Post \ U \ z \subseteq C \}$$

The reason why we choose to work with sets, rather than predicates, is simply that it casts the technical material in a similar style to W_\bullet-refinement (see section 3.3) which also constructs a set from the underlying partial relation.

Proposition 2.4

The following introduction and elimination rules for the weakest precondition of U are derivable:

$$\frac{Pre \ U \ t \ \ t' \in Post \ U \ t \vdash z' \in C} {t \in \ wp \ U \ C} \hspace{1cm} (wp^+)$$
where \(z \) is a fresh variable.

\[
\begin{align*}
t \in \text{wp } U C & \quad (wp_0) \\
\text{Pre } U t & \quad (wp_0) \\
\end{align*}
\]

Compare definition 2.3 with definition 3.1 of [26].

Lemma 2.5

The following additional rule is derivable:

\[
\begin{align*}
\text{Pre } U t & \quad (1) \\
t \in \text{wp } U (\text{Post } U t) & \quad (1)
\end{align*}
\]

Proof. Trivial:

\[
\begin{align*}
\text{Pre } U t & \quad (1) \\
t \in \text{wp } U (\text{Post } U t) & \quad (1)
\end{align*}
\]

Since the reverse direction always holds, we have established that \(t \in \text{wp } U (\text{Post } U t) \) and \(\text{Pre } U t \) are equivalent.

3 Operation refinement

Operation refinement concerns the derivation of a more concrete operation from a given abstract one, without changing the specification of the underlying state. It is sometimes called *algorithmic refinement* [32, 16] or *algorithm design* [41]. We have an immediate question: *what does it mean for one partial relation to refine another?*

We begin by introducing three distinct notions of operation refinement, based on three different answers to the question above, one of which is based on the weakest precondition interpretation (section 2), the other is a proof-theoretic characterisation that captures refinement directly in the language and in terms of the natural properties of preconditions and postconditions, and the third one is based on the standard approach involving a of lifted-totalisation of the underlying partial relations (see e.g. [39] and [10]). We then go on to compare them and to show that they are all equivalent.

We will use the meta-variables \(U_0 \) and \(U_1 \) to range over operation schemas (partial relations), where \(U_0 \) will always be concrete and \(U_1 \) abstract. Since we only deal with operation refinement in this section, the abstract and concrete operations will have the same type, that is \(\text{P}(T^{in} \bowtie T^{out'}) \). With this settled, we can now omit the type superscripts in most places in this section.

3.1 WP-refinement

WP-refinement is a characterisation of refinement based on the weakest precondition interpretation introduced in the preceding section. The (second-order) definition is standard.

WP-refinement is written \(U_0 \sqsubseteq_{wp} U_1 \) (\(U_0 \) WP-refines \(U_1 \)) and is given by the following \(\mathcal{Z}_{\mathcal{C}} \) definition:

\[\text{These are also investigated in [11, 12] along with other characterisations of operation refinement.}\]
Definition 3.1

\[U_0 \sqsupseteq \text{wp} U_1 = \text{df} \forall C \quad \text{wp} \quad U_1 C \subseteq \text{wp} \quad U_0 C \]

Proposition 3.2

The following introduction and elimination rules for WP-refinement are derivable:

\[\frac{z \in \text{wp} U_1 C \vdash z \in \text{wp} U_0 C}{U_0 \sqsupseteq \text{wp} U_1} \quad (\sqsupseteq^+) \]

where \(z \) and \(C \) are fresh variables.

\[\frac{U_0 \sqsupseteq \text{wp} U_1 \quad t \in \text{wp} U_1 C}{t \in \text{wp} U_0 C} \quad (\sqsupseteq^-) \]

3.2 S-refinement

In this section, we introduce a purely proof-theoretic characterisation of refinement, which is closely connected to (sufficient conditions for) refinement as introduced by Spivey (hence “S”-refinement) in [37] and as discussed in, for example, [26, 28], [15, p.169], [41, p.200] and [33, p.222-223].

This notion is based on two basic observations regarding the properties one expects in a refinement: First, that a refinement may involve the reduction of nondeterminism; second that it may also involve the expansion of the domain of definition\(^3\). Put another way, we have a refinement providing that postconditions do not weaken (we do not permit an increase in nondeterminism in a refinement) and that preconditions do not strengthen (we do not permit requirements in the domain of definition to disappear in a refinement). This notion can be captured by forcing the refinement relation to hold exactly when these conditions apply. S-refinement is written \(U_0 \sqsupseteq_s U_1 \) and is given by the definition that leads directly to the following rules:

Proposition 3.3

Let \(z, z_0, z_1 \) be fresh variables.

\[\frac{\text{Pre} U_1 \quad z \vdash \text{Pre} U_0 \quad z \quad \text{Pre} U_1 \quad z_0 \ast z_1' \in U_0 \vdash z_0 \ast z_1' \in U_1}{U_0 \sqsupseteq_s U_1} \quad (\sqsupseteq^+_s) \]

\[\frac{U_0 \sqsupseteq_s U_1 \quad \text{Pre} U_1 \quad t \quad \text{Pre} U_0 \quad t}{\text{Pre} U_0 \quad t} \quad (\sqsupseteq^-_s) \]

\[\frac{U_0 \sqsupseteq_s U_1 \quad \text{Pre} U_1 \quad t_0 \ast t_1' \in U_0 \quad t_0 \ast t_1' \in U_1}{t_0 \ast t_1' \in U_1} \quad (\sqsupseteq^-_s) \]

This theory does not depend on, and makes no reference to, the \(\bot \) value we will require in the next section. It can be formalised in the core theory \(Z_C \).

\(^3\)Some refer to this property as reduction of undefinedness (e.g. [29]).
An analysis of total correctness refinement models for partial relation semantics II

3.9 W_r-refinement

W_r-refinement constitutes the standard model-theoretic characterisation of refinement based on a relational completion operator (see appendix B and [11, 12]). This notion is adapted from [39] (chapter 16, et seq.), hence “W” for Woodcock. It is written $U_0 \supseteq_{W_r} U_1$ and given by the following definition:

Definition 3.4

\[
U_0 \supseteq_{W_r} U_1 = \text{df} \quad U_0 \subseteq U_1
\]

We obtain obvious introduction and elimination rules.

Proposition 3.5

\[
\frac{z \in \bullet U_0, z \in \bullet U_1}{U_0 \supseteq_{W_r} U_1}
\]

\[
\frac{U_0 \supseteq_{W_r} U_1, t \in \bullet U_0}{t \in \bullet U_1}
\]

3.4 Proving equivalence of refinement theories

Methodologically, we shall be showing that all judgements of refinement in one theory are contained among the refinements sanctioned by another. Such results can always be established proof-theoretically because we have expressed even our model-theoretic approach as a theory (a set of introduction and elimination rules). Specifically, we will show that the refinement relation of a theory T_0 satisfies the elimination rule (or rules) for refinement of another theory T_1. Since the elimination rules and introduction rules of a theory enjoy the usual symmetry properties, this is sufficient to show that all T_0-refinements are also T_1-refinements. Equivalence can then be shown by interchanging the roles of T_0 and T_1 in the above.

3.5 WP-refinement and S-refinement are equivalent

In this section we demonstrate that WP-refinement and S-refinement are equivalent. We begin by showing that WP-refinement satisfies the two S-refinement elimination rules.

Proposition 3.6

The following rule is derivable:

\[
\frac{U_0 \supseteq_{wp} U_1 \quad \text{Pre } U_1 \ t}{\text{Pre } U_0 \ t}
\]

4The “bullet” subscript of “W” signifies the relational completion operator involved; in this case the chaotic lifted-totalisation. We use this notation in order to distinguish among various refinement characterisations we investigated in [11, 12]; these are based on other notions of relational completion such as: the strict (chaotic) lifted totalisation [4], the abortive lifted-totalisation [3] [10, p.76] and the non-lifted totalisation [11].
An analysis of total correctness refinement models for partial relation semantics II

Proof.

\[
\frac{U_0 \supseteq_{wp} U_1 \quad \text{Pre } U_1 t \quad t \in \text{wp } U_1 (\text{Post } U_1 t) \quad (L. 2.5)}{t \in \text{wp } U_0 (\text{Post } U_1 t)} \quad \text{Pre } U_0 t
\]

Now the second elimination rule.

Proposition 3.7

The following rule is derivable:

\[
\frac{U_0 \supseteq_{wp} U_1 \quad \text{Pre } U_1 t_0 \quad t_0 \ast t'_1 \in U_0}{t_0 \ast t'_1 \in U_1}
\]

Proof.

\[
\frac{U_0 \supseteq_{wp} U_1 \quad \text{Pre } U_1 t_0 \quad t_0 \in \text{wp } U_1 (\text{Post } U_1 t_0) \quad (L. 2.5) \quad t_0 \ast t'_1 \in U_0}{t'_1 \in \text{Post } U_1 t_0} \quad \frac{t'_1 \in \text{Post } U_0 t_0}{t_0 \ast t'_1 \in U_1}
\]

Theorem 3.8

\[
U_0 \supseteq_{wp} U_1 \quad \frac{U_0 \supseteq_{s} U_1}{U_0 \supseteq_{s} U_1}
\]

Proof. This follows immediately, by \((S^+)\), from propositions 3.6 and 3.7⁵.

We now show that every S-refinement is a WP-refinement.

Proposition 3.9

\[
\frac{U_0 \supseteq_{s} U_1 \quad t \in \text{wp } U_1 C}{t \in \text{wp } U_0 C}
\]

Proof.

\[
\frac{U_0 \supseteq_{s} U_1 \quad t \in \text{wp } U_1 C \quad \text{Pre } U_1 t \quad t \ast t'_0 \in U_1 \quad (1)}{t \ast t'_0 \in \text{Post } U_0 t} \quad \frac{U_0 \supseteq_{s} U_1 \quad \text{Pre } U_1 t \quad t \ast t'_0 \in U_1 \quad (1)}{t'_0 \in \text{Post } U_1 t}
\]

⁵The proofs of such theorems are always automatic by the structural symmetry between introduction and elimination rules. We shall not give them in future.
Theorem 3.10

\[
\frac{U_0 \sqsupseteq U_1}{U_0 \sqsupseteq_{\text{wp}} U_1}
\]

Theorems 3.8 and 3.10 establish that WP-refinement and S-refinement are equivalent. It is interesting to note that WP-refinement is a \textit{second-order} definition, involving quantification over sets (the postconditions), whereas S-refinement is a first-order theory: evidently there is nothing \textit{essentially} second-order about weakest precondition refinement.

3.6 WP-refinement and W•-refinement are equivalent

We now show that WP-refinement and W•-refinement are equivalent. In previous work [11] we showed that S-refinement and W•-refinement are equivalent; this section illustrates directly the connection between WP-refinement and W•-refinement, highlighting the precise role of \(\bot \) in ensuring the equivalence.

First, we prove that WP-refinement satisfies the W•-refinement elimination rule. We will write \(T^* \) for the set \(T_1^{in} \times T_1^{out'} \).

Proposition 3.11

The following rule is derivable:

\[
\frac{U_0 \sqsupseteq_{\text{wp}} U_1 \quad t_0 \star t'_1 \in U_0}{t_0 \star t'_1 \in U_1}
\]

Proof.

\[
\frac{U_0 \sqsupseteq_{\text{wp}} U_1 \quad \text{Pre } U_1 t_0 \quad t_0 \in \text{wp } U_1 \left(\text{Post } U_1 t_0 \right) \quad \delta \quad \vdots}{t_0 \star t'_1 \in U_1 \quad t_0 \star t'_1 \in U_1}
\]

Where \(\delta \) stands for the following branch:

\[
\frac{t_0 \star t'_1 \in U_0 \quad \text{Pre } U_1 t_0 \quad t_0 \in \text{wp } U_1 \left(\text{Post } U_1 t_0 \right) \quad P. \; 3.6}{t_0 \star t'_1 \in U_0 \quad t_0 \star t'_1 \in U_0}
\]

From this we immediately get the following theorem:
We now show that W_\bullet-refinement satisfies the WP-refinement elimination rule. For this, we will need the following lemma:

Lemma 3.13

\[
\frac{U_0 \sqsupseteq_{w_\bullet} U_1 \quad \text{Pre } U_1 \ t}{\text{Pre } U_0 \ t}
\]

Proof.

\[
\frac{\text{Pre } U_1 \ t \quad t \in T^m \quad t \in T^m}{\neg \text{Pre } U_0 \ t \quad (L. B.3(iii))}
\]

\[
\frac{t \not\in U_0 \quad t \not\in U_0}{t \not\in U_1}
\]

\[
\frac{t \not\in U_1 \quad \text{false \ (L. A.5)}}{\text{Pre } U_0 \ t \quad (1)}
\]

Proposition 3.14

The following rule is derivable:

\[
\frac{U_0 \sqsupseteq_{w_\bullet} U_1 \quad t \in \text{ wp } U_1 \ C}{t \in \text{ wp } U_0 \ C}
\]

Proof.

\[
\frac{U_0 \sqsupseteq_{w_\bullet} U_1 \quad t \in \text{ wp } U_1 \ C \quad \text{Pre } U_1 \ t \quad \delta}{t \in \text{ wp } U_0 \ C \quad (L. 3.13)}
\]

\[
\frac{t \in \text{ wp } U_1 \ C \quad \text{Pre } U_1 \ t \quad \delta}{t \in \text{ wp } U_0 \ C \quad (1)}
\]

Where δ stands for the following branch:

\[
\frac{t \not\in U_0 \ t \quad (1)}{t \not\in U_0 \ t \quad (L. B.3(iii))}
\]

\[
\frac{t \not\in U_0 \ t \quad (L. B.3(iii))}{t \not\in U_1 \ t \quad (2)}
\]

\[
\frac{t \not\in U_1 \ t \quad (L. B.3(iii))}{t \not\in U_1 \ t \quad (3)}
\]

\[
\frac{t \not\in U_1 \ t \quad (L. B.3(iii))}{t \not\in U_1 \ t \quad (4)}
\]
The use of lemma 3.13 in this proof is reminiscent of proposition 4.11 in [11] and proposition 5 in [12]. These were used for showing that \(W \times \)-refinement satisfies the S-refinement elimination rule for preconditions as part of the proof demonstrating that \(W \times \)-refinement is \textit{sound} with respect to S-refinement. This result captures the fact that \(W \times \)-refinement guarantees that preconditions do not strengthen. Note that the \(\perp \) value, explicitly used in the proof of lemma 3.13, has a crucial role in establishing this property.

The following theorem is then straightforward:

Theorem 3.15

\[
\frac{U_0 \sqsubseteq_{w*} U_1}{U_0 \sqsubseteq_{wp} U_1}
\]

Theorems 3.12 and 3.15 together establish that the theories of WP-refinement and \(W \times \)-refinement are equivalent.

In conclusion, despite their superficial dissimilarity, all three theories of refinement are equivalent. We will, in sections 5 and 6, pursue a similar investigation but generalising to data-refinement with forward and backward simulations.

4 Data Simulations

The methods of data-refinement in state-based systems are well established. The conditions under which a transformation is a correct refinement step can be summarised by two simulation based refinement techniques: \textit{forward simulation} and \textit{backward simulation} [9]. In this section we revise these and introduce some essential material underlying our investigation.

4.1 Background

A data simulation [39, 41] is a relation between an abstract data space and a concrete counterpart. Data simulations\(^6\) are sometimes known as \textit{retrieve relations} [9, 10], \textit{abstraction relations} [20, 19] or \textit{linking/abstraction invariants} [35, 2]. These two techniques which enable us to verify data-refinement, are shown by the two semi-commuting diagrams in Fig. 1. Forward and backward simulations are also respectively known as downward and upward simulations [9, 10, 20, 19] due to their directions in the commuting diagrams in Fig. 1; de Rover and Engelhardt [7] name them \(L \) and \(L^{-1} \) simulation (respectively) after the shapes created by the initial paths in the commuting diagrams. We prefer to name them forward and backward for reasons given in [40]. One significant pragmatic distinction between them is that backward simulation refinement permits the postponement of nondeterministic choices, whereas forward simulation prohibits that [10]. For this very reason, the B Abstract Machine Notation [1, 35] only permits forward simulation refinement [36].

\(^6\)The notion of simulation is overloaded in the literature. Various authors use it to denote a certain refinement technique, whereas others use it to denote the \textit{retrieve relation} used in a certain refinement technique. In this paper we use the word “simulation” to specifically denote a retrieve relation.
An analysis of total correctness refinement models for partial relation semantics II

Fig. 1: Forward simulation and backward simulation refinement techniques. Aop and Cop represent the abstract and concrete operations (respectively), whereas S represents the simulation. Note that a forward simulation is oriented (by composition) from the abstract to the concrete data space and, in a backward simulation, in the opposite direction.

Both forward and backward simulation refinement techniques are known to be sound but neither of them is singly complete. However, they are jointly complete [19, 40]. This underlies Derrick’s powersimulation refinement [8], which constitutes a single complete refinement technique for relational based systems. There is also a single complete refinement technique using predicate transformers [17], where backward simulation refinement (named cosimulation in that context) is shown to be sound and complete.

4.2 Preliminaries

As in section 3), we will use the meta-variables U_0 and U_1 to respectively range over concrete and abstract operation schemas. We adopt an approach to typing similar to that taken in [7]: our concrete type is $\mathbb{P}(T_0 \uplus T_0')$ and the abstract type is $\mathbb{P}(T_1 \uplus T_1')$. Therefore, forward simulation (abstract to concrete) is of type $\mathbb{P}(T_1 \uplus T_0')$ and backward simulation (concrete to abstract) is of type $\mathbb{P}(T_0 \uplus T_1')$.\footnote{Having established these types for operations and simulations, we can omit the type superscripts in most places in the sequel.} In this way a simulation is modelled as a set of bindings like any other operation schema.

We will need to incorporate the \bot element when a simulation is combined with lifted-totalised operations (see appendix B and [11, 12]). Naturally, the chaotic totalisation [39] is unacceptable here, as this would enforce a link between abstract and concrete states that are not supposed to be linked. The conventional approach [39, 10] is to (non-strictly) lift\footnote{Lifting signifies mapping \bot of the input set of the relation onto all the states of its output set.} \bot in the input type of the simulation, thus retaining its partiality. This leads to the following definition:

\[\text{Forward Simulation} \]

\[\text{Backward Simulation} \]

\[\begin{array}{c}
Aop \\
\begin{array}{c}
S \\
U | \\
S
\end{array}
\end{array} \]

\[\begin{array}{c}
Aop \\
\begin{array}{c}
S \\
U | \\
S
\end{array}
\end{array} \]
An analysis of total correctness refinement models for partial relation semantics II

Definition 4.1 (Non-strictly lifted forward simulation)

\[S^P(T_1 \uplus T_0^\perp) = _{df} \{ z_1 \ast z_0' \in T_1^\perp \ast T_0^\perp \mid z_1 \neq \perp \Rightarrow z_1 \ast z_0' \in S \} \]

Then the following introduction and elimination rules are derivable:

Proposition 4.2

\[
\frac{t_1 \ast t_0' \in T_1^\perp \ast T_0^\perp}{t_1 \ast t_0' \in S} \quad (o^+ \quad) \quad \frac{t_1 \ast t_0' \in S \quad t_1 \neq \perp}{t_1 \ast t_0' \in S} \quad (o^- \quad)
\]

\[
\frac{t_1 \ast t_0' \in S}{t_1 \ast t_0' \in T_1^\perp \ast T_0^\perp} \quad (o^- \quad)
\]

Lemma 4.3

The following additional rules are derivable for non-strictly lifted forward simulations:

\[
\frac{S \subseteq \overset{o}{S}}{(i)} \quad \frac{\perp \in \overset{o}{S}}{(ii)} \quad \frac{t' \in T_0^\perp}{(iii)} \quad \frac{t_1 \ast \perp' \in \overset{o}{S}}{t_1 = \perp} \quad (iv)
\]

Likewise, we provide a similar definition for backward simulation:

Definition 4.4 (Non-strictly lifted backward simulation)

\[S^P(T_0^\perp \uplus T_1^\perp) = _{df} \{ z_0 \ast z_1' \in T_0^\perp \ast T_1^\perp \mid z_0 \neq \perp \Rightarrow z_0 \ast z_1' \in S \} \]

We obtain similar introduction and elimination rules to the ones in proposition 4.2, modulo appropriate amendments of the types: we will not state them explicitly. Additionally, we have the following standard properties for non-strictly lifted backward simulations:

Lemma 4.5

\[
\frac{S \subseteq \overset{o}{S}}{(i)} \quad \frac{\perp \in \overset{o}{S}}{(ii)} \quad \frac{t' \in T_1^\perp}{(iii)} \quad \frac{t_0 \ast \perp' \in \overset{o}{S}}{t_0 = \perp} \quad (iv)
\]

Lemmas 4.3(i – iv) and 4.5(i – iv) demonstrate that definitions 4.1 and 4.4 are consistent with the intentions described in [39] and [10]: the underlying partial relation is contained in the lifting; the \(\perp \) element is present in the relation and is mapped onto every after state, and no other initial state is so mapped.
5 Data-refinement with forward simulation

In this section we explore the relationships between three data-refinement theories founded on forward simulation. Each of these theories constitutes a generalisation of an operation refinement theory rendered in section 3: WPF-refinement based on the weakest precondition semantics; SF-refinement, a proof-theoretic notion characterising refinement in terms of the behaviour of preconditions and the fundamental properties expected in a forward simulation refinement; and WF*-refinement, a model-theoretic characterisation based on the lifted-totalisation of the operations and (non-strict) lifting of the simulations. We demonstrate that these are all equivalent.

5.1 WPF-refinement

In this section we develop WPF-refinement, a forward simulation data-refinement theory based on the weakest precondition semantics presented in section 2. Unlike [27], WPF-refinement will be established solely on the weakest precondition semantics. By taking this approach, we generalise the approach taken in section 3.1 and establish an account which we believe is clear and succinct. It is rather in the spirit of Definition 3 in [32]; however, since we use an underlying relational semantics (rather than predicate transformers) we will require some additional relational nomenclature. In particular we need to express the way in which the simulation properly combines with the postcondition to capture data-refinement.

We define the image operator for simulations with respect to a (postcondition) set C.

Definition 5.1

\[[C^P T_1]S^{P(T_1)\gamma T_0} = \{ t_0 \in T_0 \mid \exists z_1 \in C \cdot z_1 * z'_0 \in S \} \]

Note the slight subtleties arising from the priming involved.

Proposition 5.2

The following introduction and elimination rules are derivable:

\[
\frac{t_1 \in C \quad t_1 * t'_0 \in S}{t_0 \in [C]S} \quad (\text{[C]}S^+) \quad \frac{t \in [C]S \quad y \in C \quad y * t' \in S \vdash P}{P} \quad (\text{[C]}S^-)
\]

The usual sideconditions apply to the eigenvariable y.

We can now define WPF-refinement written \(U_0 \geq_{\text{wpf}} U_1 \) (\(U_0 \) WPF-refines \(U_1 \) with respect to the simulation \(S \))\(^9\).

Definition 5.3

\(U_0 \geq_{\text{wpf}} U_1 = df \forall C^P T_1 \bullet [wp \ U_1 \ C]S \subseteq wp \ U_0 \ [C]S' \)

\(^9\)We will omit the superscript \(S \) from now on, in this and other notions of refinement that depend upon a simulation.
An analysis of total correctness refinement models for partial relation semantics II

Proposition 5.4
The following introduction and elimination rules are derivable for WPF-refinement:

\[
\frac{z \in [\text{wp } U_1 C] S \vdash z \in \text{wp } U_0 [C] S'}{U_0 \sqsubseteq_{\text{wpf}} U_1} \quad (\exists_{\text{wpf}})
\]

Where \(z\) and \(C\) are fresh variables.

\[
\frac{U_0 \sqsubseteq_{\text{wpf}} U_1 \quad t \in [\text{wp } U_1 C] S}{t \in \text{wp } U_0 [C] S'} \quad (\exists_{\text{wpf}})
\]

This theory does not depend on, and makes no reference to, the \(\perp\) value; it is formalised in the theory \(Z_C\).

5.2 SF-refinement

In this section, we introduce a proof-theoretic characterisation of forward simulation refinement, which is closely connected to sufficient refinement conditions introduced by, for example, Josephs [27], King [28], Woodcock [39, p.260] (indicated as “F-corr”), Derrick and Boiten [10, p.90], Jacky [25, p.251] and Potter et al. [33, p.236]. These conditions correspond to the premises of our introduction rule for SF-refinement.

As a generalisation of S-refinement (section 3.2), this notion is based on the two properties expected in a refinement: that postconditions do not weaken and preconditions do not strengthen in the presence of a forward simulation. Thus, SF-refinement can be expressed by admitting refinement to hold precisely when these conditions apply.

It is written \(U_0 \sqsubseteq_{\text{sf}} U_1\) and is given by the \(Z_C\) definition that leads directly to the following rules:

Proposition 5.5

Let \(x_0, x_1, z_0, z_1\) be fresh variables.

\[
\frac{z_1 \star z'_0 \in S, \text{Pre } U_1 z_1}{\text{Pre } U_1, x_1, z_0 \star z'_0 \in U_0, x_1 \star z'_0 \in S \vdash x_1 \star t' \in U_1} \quad (\exists_{u})
\]

\[
\frac{\text{Pre } U_1, t_1 \star t'_0 \in S}{\text{Pre } U_0, t_0} \quad (\exists_{u})
\]

\[
\frac{U_0 \sqsubseteq_{\text{sf}} U_1 \quad \text{Pre } U_1 t_1 \quad t_1 \star t'_0 \in S \quad t_1 \star y' \in U_1, y \star t'_2 \in S \vdash P}{U_0 \sqsubseteq_{\text{sf}} U_1 \quad \text{Pre } U_1 t_1 \quad t_1 \star t'_2 \in U_0 \quad t_1 \star t'_0 \in S \quad \text{Pre } U_0, t_0 \quad t_1 \star y' \in U_1, y \star t'_2 \in S \vdash P} \quad (\exists_{u})
\]

The usual sideconditions apply to the eigenvariable \(y\).
5.3 WF•-refinement

WF•-refinement constitutes a generalisation of W•-refinement (section 3.3) to forward simulation data-refinement. This characterisation of refinement is based on the (chaotic) relational completion operator (set out in appendix B) applied to the underlying operations and on (non-strict) lifting of the simulation (as developed in section 4.2). It is also discussed in [39, p.246] and [9].

WF•-refinement captures, schematically, the forward simulation commuting diagram in Fig. 1 and is based on schema or, more generally, relational composition (see appendix A, proposition A.1). It is written \(U_0 \sqsupseteq_{wbf} U_1 \) and is defined in \(Z_C^+ \) as follows:

Definition 5.6

\[
U_0 \overset{s}{\sqsupseteq}_{wbf} U_1 = df S \uplus U_0 \subseteq U_1 \uplus S
\]

Obvious introduction and elimination rules for WF•-refinement follow from this definition.

5.4 WPF-refinement and SF-refinement are equivalent

We now show that WPF-refinement and SF-refinement are equivalent, beginning by proving that WPF-refinement satisfies the two SF-refinement elimination rules. First the rule for preconditions.

Proposition 5.7

The following rule is derivable:

\[
\frac{U_0 \sqsupseteq_{wpf} U_1 \quad \text{Pre } U_1 t_1 \quad t_1 \ast t'_0 \in S}{\text{Pre } U_0 t_0}
\]

Proof.

\[
\frac{\text{Pre } U_1 t_1 \quad t_1 \in \text{wp } U_1 (\text{Post } U_1 t_1) \quad \text{(L. 2.5)} \quad t_1 \ast t'_0 \in S}{U_0 \sqsupseteq_{wpf} U_1 \quad t_0 \in \text{wp } U_1 (\text{Post } U_1 t_1)S} \Rightarrow t_0 \in \text{wp } U_0 (\text{Post } U_1 t_1)S' \\
\frac{t_0 \in \text{wp } U_0 (\text{Post } U_1 t_1)S'}{\text{Pre } U_0 t_0}
\]

Turning now to the second elimination rule in SF-refinement.

Proposition 5.8

The following rule is derivable:

\[
\frac{U_0 \sqsupseteq_{wpf} U_1 \quad \text{Pre } U_1 t_1 \quad t_0 \ast t'_2 \in U_0 \quad t_1 \ast t'_0 \in S \quad t_1 \ast y' \in U_1, y \ast t'_2 \in S \vdash P}{P}
\]
Proof.

\[
\frac{\text{Pre } U_1 t_1 \quad t_1 \in \text{wp } U_1 \left(\text{Post } U_1 t_1 \right) \quad \left(L. \ 2.3 \right) \quad t_1 \star t_0' \in S}{t_0 \in \text{wp } U_1 \left[\text{Post } U_1 t_1 \right] | S'} \quad t_0 \star t_0' \in U_0 \quad t_1' \in \text{Post } U_0 t_0 \quad \delta \vdash p}{t_1' \in \text{Post } U_1 t_1 | S'} \quad \vdash p}
\]

(1)

Where \(\delta \) stands for the following branch:

\[
\frac{y' \in \text{Post } U_1 t_1 \quad \left(1 \right) \quad \left(2 \right) \quad \left(3 \right) \quad y \star t' \in S}{t_1 \star y' \in U_1 \land y \star t_2' \in S} \quad \vdash p
\]

\[
\frac{t_1 \star y' \in U_1 \land y \star t_2' \in S}{t_1 \star y' \in U_1 \land y \star t_2' \in S} \quad \vdash p
\]

\[
\frac{t_1 \star y' \in U_1 \land y \star t_2' \in S}{t_1 \star y' \in U_1 \land y \star t_2' \in S} \quad \vdash p
\]

\[
\frac{t_1 \star y' \in U_1 \land y \star t_2' \in S}{t_1 \star y' \in U_1 \land y \star t_2' \in S} \quad \vdash p
\]

\[
\frac{t_1 \star y' \in U_1 \land y \star t_2' \in S}{t_1 \star y' \in U_1 \land y \star t_2' \in S} \quad \vdash p
\]

\[
\frac{t_1 \star y' \in U_1 \land y \star t_2' \in S}{t_1 \star y' \in U_1 \land y \star t_2' \in S} \quad \vdash p
\]

\[
\frac{t_1 \star y' \in U_1 \land y \star t_2' \in S}{t_1 \star y' \in U_1 \land y \star t_2' \in S} \quad \vdash p
\]

\[
\frac{t_1 \star y' \in U_1 \land y \star t_2' \in S}{t_1 \star y' \in U_1 \land y \star t_2' \in S} \quad \vdash p
\]

\[
\frac{t_1 \star y' \in U_1 \land y \star t_2' \in S}{t_1 \star y' \in U_1 \land y \star t_2' \in S} \quad \vdash p
\]

\[
\frac{t_1 \star y' \in U_1 \land y \star t_2' \in S}{t_1 \star y' \in U_1 \land y \star t_2' \in S} \quad \vdash p
\]

\[
\frac{t_1 \star y' \in U_1 \land y \star t_2' \in S}{t_1 \star y' \in U_1 \land y \star t_2' \in S} \quad \vdash p
\]

\[
\frac{t_1 \star y' \in U_1 \land y \star t_2' \in S}{t_1 \star y' \in U_1 \land y \star t_2' \in S} \quad \vdash p
\]

\[
\frac{t_1 \star y' \in U_1 \land y \star t_2' \in S}{t_1 \star y' \in U_1 \land y \star t_2' \in S} \quad \vdash p
\]

\[
\frac{t_1 \star y' \in U_1 \land y \star t_2' \in S}{t_1 \star y' \in U_1 \land y \star t_2' \in S} \quad \vdash p
\]

\[
\frac{t_1 \star y' \in U_1 \land y \star t_2' \in S}{t_1 \star y' \in U_1 \land y \star t_2' \in S} \quad \vdash p
\]

\[
\frac{t_1 \star y' \in U_1 \land y \star t_2' \in S}{t_1 \star y' \in U_1 \land y \star t_2' \in S} \quad \vdash p
\]

\[
\frac{t_1 \star y' \in U_1 \land y \star t_2' \in S}{t_1 \star y' \in U_1 \land y \star t_2' \in S} \quad \vdash p
\]

\[
\frac{t_1 \star y' \in U_1 \land y \star t_2' \in S}{t_1 \star y' \in U_1 \land y \star t_2' \in S} \quad \vdash p
\]

\[
\frac{t_1 \star y' \in U_1 \land y \star t_2' \in S}{t_1 \star y' \in U_1 \land y \star t_2' \in S} \quad \vdash p
\]

\[
\frac{t_1 \star y' \in U_1 \land y \star t_2' \in S}{t_1 \star y' \in U_1 \land y \star t_2' \in S} \quad \vdash p
\]

\[
\frac{t_1 \star y' \in U_1 \land y \star t_2' \in S}{t_1 \star y' \in U_1 \land y \star t_2' \in S} \quad \vdash p
\]

\[
\frac{t_1 \star y' \in U_1 \land y \star t_2' \in S}{t_1 \star y' \in U_1 \land y \star t_2' \in S} \quad \vdash p
\]

\[
\frac{t_1 \star y' \in U_1 \land y \star t_2' \in S}{t_1 \star y' \in U_1 \land y \star t_2' \in S} \quad \vdash p
\]

\[
\frac{t_1 \star y' \in U_1 \land y \star t_2' \in S}{t_1 \star y' \in U_1 \land y \star t_2' \in S} \quad \vdash p
\]

\[
\frac{t_1 \star y' \in U_1 \land y \star t_2' \in S}{t_1 \star y' \in U_1 \land y \star t_2' \in S} \quad \vdash p
\]

\[
\frac{t_1 \star y' \in U_1 \land y \star t_2' \in S}{t_1 \star y' \in U_1 \land y \star t_2' \in S} \quad \vdash p
\]

\[
\frac{t_1 \star y' \in U_1 \land y \star t_2' \in S}{t_1 \star y' \in U_1 \land y \star t_2' \in S} \quad \vdash p
\]
Theorem 5.11

\[U_0 \sqsupseteq_{sf} U_1 \]
\[\frac{}{U_0 \sqsupseteq_{wpf} U_1} \]

Theorems 5.9 and 5.11 together establish that the theories of SF-refinement and WPF-refinement are equivalent.

5.5 WPF-refinement and WF\(\star\)-refinement are equivalent

In this section, we demonstrate that WPF-refinement and WF\(\star\)-refinement are equivalent. We begin by showing that every WPF-refinement is a WF\(\star\)-refinement. For this we prove that WPF-refinement satisfies the elimination rule for WF\(\star\)-refinement.

Proposition 5.12

The following rule is derivable:

\[U_0 \sqsupseteq_{wpf} U_1 \quad \text{if} \quad t_1 \star t'_0 \in S' \quad \text{and} \quad t_1 \star t'_0 \in \overset{\circ}{U_1} \overset{\circ}{S} \]

Notice that the following derivation depends on the use of the law of excluded middle (see, for example, [38]).

Proof.

\[\begin{array}{c}
\frac{\text{Pre } U_1 t_1 \lor \neg \text{Pre } U_1 t_1}{(LEM)}
\delta_0
\delta_1
\end{array} \]

\[\frac{}{t_1 \star t'_0 \in \overset{\circ}{U_1} \overset{\circ}{S}} \]

Where \(\delta_0 \) stands for the following branch:

\[\frac{w' \in \text{Post } U_0 t_1}{(3)} \]
\[\frac{t_1 \star w' \in \overset{\bullet}{U_1}}{(L. B.3(i))} \]
\[\frac{t_1 \star w' \in \overset{\bullet}{U_1}}{(L. B.3(i))} \]
\[\frac{t_1 \star t'_0 \in \overset{\circ}{U_1} \overset{\circ}{S}}{(3)} \]

Where \(\beta_0 \) is:

\[\begin{array}{c}
\beta_0
\delta_0
\delta_1
\end{array} \]

\[\frac{y \star t'_0 \in U_0}{(1)} \]
\[\frac{\text{Pre } U_0 y}{y \in \text{wp } U_0 \text{ Post } U_1 t_1} \]
\[\frac{\text{Post } U_1 t_1 S'}{y \star t'_0 \in U_0} \]
\[\frac{\text{Post } U_1 t_1 S'}{y \star t'_0 \in U_0} \]

Where \(\beta_1 \) is:

\[\begin{array}{c}
\beta_1
\delta_0
\delta_1
\end{array} \]

\[\frac{y \star t'_0 \in U_0}{(1)} \]
\[\frac{\text{Pre } U_0 y}{y \in \text{wp } U_0 \text{ Post } U_1 t_1} \]
\[\frac{\text{Post } U_1 t_1 S'}{y \star t'_0 \in U_0} \]
\[\frac{\text{Post } U_1 t_1 S'}{y \star t'_0 \in U_0} \]

Where \(\beta_1 \) is:
An analysis of total correctness refinement models for partial relation semantics II 18

and β_1 is:

$$\begin{align*}
\text{Pre } U_1 t_1 & \Downarrow (2) \\
t_1 \in \text{wp } U_1 (\text{Post } U_1 t_1) & \quad (L. \ \alpha_5) \\
t_1 \ast y' \in \mathcal{S} & \quad (1) \\
t_1 \ast y' \in \mathcal{S} & \quad (2) \\
\text{Pre } U_1 t_1 & \quad \downarrow (L. \ \alpha_5)
\end{align*}$$

and δ_1 stands for the following branch:

$$\begin{align*}
\text{Pre } U_1 t_1 & \Downarrow (2) \\
t_1 \ast y' \in \mathcal{S} & \quad (1) \\
t_1 \ast y' \in T_{1_k} \ast T'_{0_k} & \quad (L. B.3(iii)) \\
t_1 \ast \perp \in U_1 & \quad (L. B.3(iii)) \\
t_1 \ast t'_0 \in U_1 & \quad \Downarrow (L. 4.3(iii))
\end{align*}$$

The following theorem is then immediate:

Theorem 5.13

$$\begin{align*}
U_0 \sqsubseteq_{\text{wpf}} U_1 & \quad \Downarrow (1) \\
U_0 \sqsubseteq_{\text{wf}} U_1 & \quad \Downarrow (2) \\
U_0 \sqsubseteq_{\text{wf}_*} U_1 & \quad \Downarrow (L. \ \alpha_5)
\end{align*}$$

We now show that WF_*-refinement satisfies the elimination rule for WPF-refinement. For this, we will need the following lemma:

Lemma 5.14

$$\begin{align*}
U_0 \sqsubseteq_{\text{wf}_*} U_1 & \quad \text{Pre } U_1 t_1 \quad t_1 \ast t'_0 \in \mathcal{S} \\
\text{Pre } U_0 t_0 & \quad \Downarrow (2)
\end{align*}$$

Proof.

$$\begin{align*}
\delta & \Downarrow (L. \ \alpha_5) \\
t_1 \ast \perp \in U_1 & \quad \Downarrow (L. \ \alpha_5) \\
\text{Pre } U_1 t_1 & \quad \Downarrow (2) \\
t_1 \ast \perp \in U_1 & \quad \Downarrow (L. \ \alpha_5) \\
\text{false} & \quad \Downarrow (1)
\end{align*}$$
An analysis of total correctness refinement models for partial relation semantics II

where δ is:

\[
\frac{t_1 \cdot t_0' \in S}{t_1 \cdot t_0' \in S} \quad (L. 4.3(i)) \quad \frac{t_0 \in T_0}{t_0 \in T_0} \quad (L. B.3(iii))
\]

\[
U_0 \not U_1 \quad t_1 \cdot t_0' \in S \quad U_0 \not U_1 \quad t_1 \cdot t_0' \in S \quad U_0 \not U_1 \quad t_1 \cdot t_0' \in S
\]

Proposition 5.15
The following rule is derivable:

\[
U_0 \not U_1 \quad t \in \text{wp } U_1 \quad C \quad S
\]

Proof.

\[
U_0 \not U_1 \quad \frac{y \in \text{wp } U_1 \quad C}{\text{pre } U_1 \quad y} \quad \frac{y \cdot t' \in S}{\text{pre } U_0 \cdot t} \quad t \in \text{wp } U_0 \quad C \quad S'
\]

Where δ₀ is:

\[
\frac{y \cdot t' \in S}{y \cdot t' \in S} \quad (L. 4.3(i)) \quad \frac{t \cdot t_0' \in U_1 \cdot U_0}{t \cdot t_0' \in U_1 \cdot U_0} \quad \frac{t \cdot t_0' \in U_0}{t \cdot t_0' \in U_0} \quad (L. B.3(i))
\]

\[
U_0 \not U_1 \quad \frac{\frac{y \cdot t_0' \in S \quad U_0 \not U_1 \quad t_0' \in [C]S'}{t_0' \in [C]S'} \quad (3)
\]

and δ₁ is:

\[
\frac{y \cdot w' \in U_1 \quad C}{w' \in \text{post } U_1 \quad y} \quad \frac{w' \cdot t_0' \in S}{w' \cdot t_0' \in S} \quad \frac{w' \cdot t_0' \in S}{w' \cdot t_0' \in S} \quad (L. A.5)
\]

Where α stands for the following branch:

\[
\frac{y \cdot w' \in U_1 \quad C}{\text{pre } U_1 \quad y} \quad \frac{y \cdot w' \in U_1}{y \cdot w' \in U_1}
\]
An analysis of total correctness refinement models for partial relation semantics II

The fact that the proof above depends on the use of lemma 5.14 is consistent with the investigation carried out in section 3.6. This lemma once again captures the basic property expected in a refinement, but in the context of WF*-refinement: preconditions do not strengthen in the presence of forward simulation. It is part of the proof demonstrating that WF*-refinement is sound with respect to SF-refinement\(^\text{10}\), where, again, the \(\bot\) value is vital for establishing this result.

The following theorem is then derivable:

Theorem 5.16

\[
\begin{align*}
U_0 \sqsupseteq_{\text{wf}_*} U_1 \\
U_0 \sqsupseteq_{\text{wpf}} U_1
\end{align*}
\]

Together, theorems 5.13 and 5.16 show that WPF-refinement and WF*-refinement are equivalent. Naturally, we have as a final corollary for this section that SF-refinement and WF*-refinement are also equivalent.

Once again, we have demonstrated that what appear to be quite different models of specification and refinement are, in fact, intimately related.

6 Data-refinement with backward simulation

This section provides an analogous investigation to that provided in the previous section 5. Here we explore three backward simulation data-refinement theories, again, generalising the corresponding operation refinement theories introduced in section 3: WPB-refinement, a weakest precondition backwards refinement; SB-refinement, the proof-theoretic characterisation of data-refinement with backward simulation; and WB*-refinement, a model-theoretic notion characterising refinement underlying lifted-totalised operations and lifted backward simulation. Using the same approach as in sections 3 and 5, we will show that these three notions of refinement are all equivalent.

6.1 WPB-refinement

We will now develop WPB-refinement, the backward simulation counterpart theory to WPF-refinement (section 5.1) and based on the weakest precondition semantics introduced in section 2.

The key issue in the previous section was discovering the correct mechanism for relating the simulation and the postcondition in the context of a weakest precondition framework. In this case we require the left residual of a backward simulation \(S\) under the set \(C\). This is rather in the spirit of the calculus for binary relations [34], in which residuation of binary relations correlates with numeric division; thus, Pratt [34] uses the notation \(a/b\) to denote the left residual of \(b\) under \(a\), where both \(a\) and \(b\) are binary relations. In contrast, having \(C\) as a set (of abstract states), rather than a relation, induces our notion of left residuation to produce a set (of concrete states) as opposed a relation in [34]. We define the left residual of \(S\) under \(C\) to be the set (of

\(^{10}\)This result constitutes part of a general investigation of forward simulation data-refinement: this will appear as part III of the series of papers of which the current paper is the second.
An analysis of total correctness refinement models for partial relation semantics II

type \(PT_0 \) of all concrete states, drawn from the domain of \(S \), which only represent abstract states that are members of \(C \).

Definition 6.1

\[
S^{(T_0 \forall T_1')}[C^{P} T_1] = \{ z_0 \in T_0 \mid \forall z_1 \cdot z_0 \star z_1' \in S \Rightarrow z_1 \in C \}
\]

Note carefully the subtleties arising from the priming in the definition above.

Proposition 6.2

Let \(z \) be a fresh variable, then the following introduction and elimination rules for the left residual of \(S \) under \(C \) are derivable:

\[
\frac{t_0 \star z' \in S}{t_0 \in S[C]} \quad (S[C]^+) \quad \frac{t_0 \in S[C]}{t_1 \in C} \quad (S[C]^–)
\]

WPB-refinement is written \(U_0 \equiv_{\text{wpb}} U_1 \) and is defined in \(Z_C \) as follows:

Definition 6.3

\[
U_0 \equiv_{\text{wpb}} U_1 = \forall C^{P} T_1' \cdot S[wp U_1 C] \subseteq wp U_0 S'[C]
\]

Proposition 6.4

The following introduction and elimination rules are derivable for WPB-refinement:

\[
\frac{z \in S[wp U_1 C]}{U_0 \equiv_{\text{wpb}} U_1} \quad (\equiv_{\text{wpb}}^+)
\]

\[
\frac{U_0 \equiv_{\text{wpb}} U_1}{t \in wp U_0 S'[C]} \quad (\equiv_{\text{wpb}}^-)
\]

6.2 **SB-refinement**

SB-refinement constitutes a proof-theoretic characterisation of data-refinement, generalising S-refinement (section 3.2) with backward simulation. It embodies the two standard attributes expected in a refinement in the presence of (backward) simulation. This notion of refinement is reminiscent of sufficient refinement conditions introduced by Woodcock [39, p.270] (indicated as “B-corr”) and by Derrick and Boiten [10, p.93]. These conditions correspond to the premises of our introduction rule for SB-refinement.

SB-refinement is written \(U_0 \equiv_{sb} U_1 \) and is given by the definition that leads directly to the following introduction and elimination rules:
Proposition 6.5
Let \(x, x_0, x_1, z, z_0 \) be fresh variables.

\[
\begin{align*}
 x \star z' \in S &\Rightarrow \text{Pre } U_1 z & \vdash \text{Pre } U_0 x \\
z_0 \star z' \in S &\Rightarrow \text{Pre } U_1 z, x_0 \star x'_1 \in S, z_0 \star x'_2 \in U_0 & \vdash \ z_0 \star t' \in S \\
z_0 \star z' \in S &\Rightarrow \text{Pre } U_1 z, x_0 \star x'_1 \in S, z_0 \star x'_2 \in U_0 & \vdash \ t \star x'_1 \in U_1 \\
U_0 \sqsupseteq_{sb} U_1 &\quad (\sqsupseteq_{sb})
\end{align*}
\]

\[
\begin{align*}
U_0 \sqsupseteq_{sb} U_1 &\quad t \star z' \in S \vdash \text{Pre } U_1 z & \vdash_{sb} (\sqsupseteq_{sb}) \\
t_0 \star z' \in S &\Rightarrow \text{Pre } U_1 z & \vdash_{sb} (\sqsupseteq_{sb},)
\end{align*}
\]

The usual sideconditions apply to the eigenvariable \(y \).

This theory does not depend on, and makes no reference to, the \(\bot \) value; it is formalised in the core theory \(Z_C \).

Notice the universal force of the variable \(z \) in the rightmost premise of \((\sqsupseteq_{sb})\). In fact, we can see the similarity between this premise and the notion of left residuation delineated in the preceding section. Rephrasing that elimination rule according to this notion shows that \(t \) is in the precondition of \(U_0 \) only if \(U_0 \sqsupseteq_{sb} U_1 \) and \(t \) belongs to the left residual of \(S \) under the domain of \(U_1 \). In other words, a concrete state is in the precondition of the concrete operation only if every abstract state that it represents (by the simulation) is manifested by the abstract operation (providing SB-refinement holds).

6.3 WB-refinement

We now introduce WB-refinement, a model-theoretic characterisation of backward simulation refinement based on a lifted-totalised operation (appendix B) and a lifted simulation (section 4.2). This notion of refinement is also discussed in [39, p.247] and [9]. WB-refinement captures the backward simulation commuting diagram in Fig. 1.

using relational composition. It is written \(U_0 \sqsupseteq_{wb} U_1 \) and is given by the following definition in \(Z_C^\perp \):

Definition 6.6

\[
U_0 \sqsupseteq_{wb} U_1 = df U_0 \sqsupseteq U_1 \sqsubseteq S \subseteq \sqsubseteq U_1
\]

We obtain obvious introduction and elimination rules for WB-refinement, which in this case we will not state explicitly.

6.4 WPB-refinement and SB-refinement are equivalent

We now show that WPB-refinement and SB-refinement are equivalent using our usual technique. We begin by demonstrating that every WPB-refinement is also an SB-
An analysis of total correctness refinement models for partial relation semantics II

refinement by proving that WPB-refinement satisfies both SB-elimination rules. We begin with the rule for preconditions.

Proposition 6.7
The following rule is derivable:

\[
\frac{U_0 \equiv_{wp} U_1 \quad t \ast z' \in S \vdash \text{Pre } U_1 z}{\text{Pre } U_0 t}
\]

Proof.

\[
\frac{t \ast t'_0 \in S}{(1)}
\]

\[
\vdots
\]

\[
\frac{\text{Pre } U_1 t_0 \quad t_0 \in \text{wp } U_1 (\text{Post } U_1 z)}{(L. 2.5)}
\]

\[
\frac{U_0 \equiv_{wp} U_1 \quad t \in S^{\text{wp } U_1 (\text{Post } U_1 z)}}{(1)}
\]

\[
\frac{t \in \text{wp } U_0 S^{\text{Post } U_1 z}}{\text{Pre } U_0 t}
\]

Now we consider the second elimination rule in SB-refinement.

Proposition 6.8
The following rule is derivable:

\[
\frac{t_0 \ast z' \in S \vdash \text{Pre } U_1 z}{U_0 \equiv_{wp} U_1 \quad t_0 \ast t'_1 \in U_0 \quad t_0 \ast y' \in S, y \ast t'_2 \in U_1 \vdash P}
\]

The following derivation depends on the use of the **law of excluded middle**.

Proof.

\[
\frac{t_0 \ast y' \in S}{(1)}
\]

\[
\frac{y \ast t'_2 \in U_1}{(1)}
\]

\[
\vdots
\]

\[
\frac{t_0 \ast y' \in S \land y \ast t'_2 \in U_1}{(1)}
\]

\[
\frac{t_0 \ast t'_2 \in S_y U_1}{P}
\]

\[
(1)
\]

Where \(\delta_0\) stands for the following branch:

\[
\frac{t_0 \ast t' \in S \lor t_0 \ast t' \notin S}{(\text{LEM})}
\]

\[
\frac{t_0 \ast t'_2 \in S_y U_1}{t_0 \ast t'_2 \in S_y U_1}
\]

\[
(2)
\]
An analysis of total correctness refinement models for partial relation semantics II 24

Where δ_1 is:

\[
\begin{align*}
\frac{t_0 \ast t' \in S}{(3)} \\
\vdots \\
\frac{t \in \text{wp } U_1 \left(\text{Post } U_1 \right)}{U_0 \sqsupset_{\text{wpb}} U_1} \quad (L. \ 2.5) \\
\frac{t_0 \in \text{wp } U_0 S'[\text{Post } U_1 \ t]}{U_1 \ \text{[Post } U_1 \ t]} \\
\frac{t_1' \in \text{Post } U_0 t_0}{t_1' \in S'[\text{Post } U_1 \ t]} \\
\frac{t_0 \ast t_1' \in U_0 \ t_1' \ast t_2' \in S'}{t_2' \in \text{Post } U_1 \ t} \\
\frac{t \ast t_2' \in U_1}{(3)}
\end{align*}
\]

and δ_2 is:

\[
\begin{align*}
\frac{t_0 \ast t' \notin S}{(x)} \\
\frac{U_0 \sqsupset_{\text{wpb}} U_1 \ t_0 \in \text{S[wp } U_1 \left(\text{Post } S \uplus U_1 \ t_0)\right]}{U_1 \ \text{(Post } S \uplus U_1 \ t_0)} \quad (\ast) \\
\frac{t_0 \ast t_1' \in U_0 \ t_1' \in \text{Post } U_0 t_0 \ t_1' \ast t_2' \in S'}{t_2' \in S'[\text{Post } S \uplus U_1 \ t_0]} \\
\frac{t_0 \ast t_2' \in S'}{t_0 \ast t_2' \in S \uplus U_1}
\end{align*}
\]

Note that the proof step labelled (\ast) above is justified by the fact that definition 6.1 can be expressed using disjunction (in the obvious way) in place of implication, in which case we obtain two introduction rules that correspond to both cases of disjunction introduction; thus, (\ast) denotes the application of $(S[C]^+_0)$.

The following theorem is then immediate:

Theorem 6.9

\[
\begin{align*}
U_0 \sqsupset_{\text{wpb}} U_1 \\
U_0 \sqsupset_{\text{sb}} U_1
\end{align*}
\]

We now show that SB-refinement satisfies the WPB-elimination rule.

Proposition 6.10

The following rule is derivable:

\[
\begin{align*}
\frac{U_0 \sqsupset_{\text{sb}} U_1 \ t \in \text{S[wp } U_1 \ C]}{t \in \text{wp } U_0 S'[C]}
\end{align*}
\]

Proof.

\[
\begin{align*}
\frac{t \in \text{S[wp } U_1 \ C]}{t \ast t_0' \in S} \quad (2) \\
\frac{t_2 \in \text{wp } U_1 C}{t_2 \in \text{Post } U_1 t_2} \quad (\delta) \\
\frac{t_0 \ast t_1' \in U_1 \ t_1' \in C}{t_1' \in S'[C]} \quad (3) \\
\frac{t_2 \in \text{Post } U_1 t_2}{t_2 \in \text{S'[Post } U_1 t_2]} \quad (2) \\
\frac{t_0 \ast t_2' \in S'}{t_0 \ast t_2' \in \text{S'[Post } U_1 t_2]} \quad (3)
\end{align*}
\]
An analysis of total correctness refinement models for partial relation semantics II

Where δ stands for the following branch:

$$
\begin{align*}
&\beta_0 \\
&\vdots \\
&U_0 \sqsupseteq_{ab} U_1 \quad t \ast t_0' \in S \Rightarrow \text{Pre } U_1 t_3 \\
&U_0 \sqsupseteq_{ab} U_1 \quad t \ast t_0' \in U_0 \\
&\beta_1 \\
&\vdots \\
&t_0' \ast t_1' \in S \\
&t_0' \ast t_1' \in S' \\
t'_1 \in C
\end{align*}
$$

Where β_0 is:

$$
\begin{align*}
t \in S[wp U_1 C] & \quad t \ast t_0' \in S \\
t_0 \in wp U_1 C & \quad \text{Pre } U_1 t_3
\end{align*}
$$

and β_1 is:

$$
\begin{align*}
t \in S[wp U_1 C] & \quad t \ast y' \in S \\
y \in wp U_1 C & \quad \text{Post } U_1 y \\
t_0' \ast t_1' \in C
\end{align*}
$$

Theorem 6.11

$$
\frac{U_0 \sqsupseteq_{ab} U_1}{U_0 \sqsupseteq_{wpb} U_1}
$$

Theorems 6.9 and 6.11 together establish that the theories of SB-refinement and WPB-refinement are equivalent.

6.5 WPB-refinement and WB*-refinement are equivalent

We now demonstrate that WPB-refinement and WB*-refinement are equivalent. To begin with, we prove that WPB-refinement satisfies the elimination rule for WB*-refinement.

Proposition 6.12

The following rule is derivable:

$$
\frac{U_0 \sqsupseteq_{wpb} U_1 \quad t_0 \ast t_1' \in U_0 \triangleright S}{t_0 \ast t_1' \in \overset{\circ}{S} \triangleright U_1}
$$

The following derivation also depends on the use of the law of excluded middle.

Proof. Let ϕ be: $\forall z \bullet t_0 \ast z' \in S \Rightarrow \text{Pre } U_1 z \lor \exists z \bullet t_0 \ast z' \in S \land \lnot \text{Pre } U_1 z$

$$
\begin{align*}
&\overline{\phi} \\
&\delta_0 \\
&\vdots \\
&t_0 \ast t_1' \in \overset{\circ}{S} \triangleright U_1 \\
&t_0 \ast t_1' \in \overset{\circ}{S} \triangleright U_1 \\
&t_0 \ast t_1' \in \overset{\circ}{S} \triangleright U_1 \\
&t_0 \ast t_1' \in \overset{\circ}{S} \triangleright U_1
\end{align*}
$$

Remark.
An analysis of total correctness refinement models for partial relation semantics II

Where δ_0 stands for the following branch (provable due to proposition 6.8):

$$U_0 \sqsubseteq_{w pb} U_1 \forall z \bullet t_0 \star z' \in S \Rightarrow Pre U_1 z \quad (2)$$

$$t_0 \star y' \in U_0 \quad y \star t'_1 \in S \quad t_0 \star t'_1 \in \hat{S} \sqsubseteq U_1 \quad (3)$$

Where β_0 is:

$$\forall \ y' \in U_0 \quad (1)$$

$$t_0 \star y' \in U_0 \quad Pre U_0 t_0$$

and β_1, β_2 are respectively:

$$\left(\begin{array}{c}
\beta_1 \\
\beta_2
\end{array} \right)$$

$$\left(\begin{array}{c}
t_0 \star w'_1 \in S \\
w_0 \star t'_1 \in U_1
\end{array} \right)$$

Where α is:

$$\left(\begin{array}{c}
t_0 \star w'_1 \in S \\
w_0 \star t'_1 \in U_1
\end{array} \right)$$

The following theorem is then straightforward:

Theorem 6.13

$$U_0 \sqsubseteq_{w pb} U_1$$

$$U_0 \sqsubseteq_{wb} U_1$$
An analysis of total correctness refinement models for partial relation semantics II

We now show that WB*-refinement satisfies the WPB-elimination rule. In line with propositions 3.14 and 5.15, we will require an auxiliary lemma for this proof demonstrating that WB*-refinement guarantees that preconditions do not strengthen in the presence of backward simulation. It is again a result coming from a wider investigation showing that WB*-refinement and SB-refinement are equivalent.\footnote{A thorough investigation of backwards simulation data-refinement comprises part IV of this series of papers.}

Lemma 6.14

\[
U_0 \equiv_{wb*} U_1 \quad t \ast z' \in S \vdash \text{Pre } U_1 z \\
\frac{}{\text{Pre } U_0 t}
\]

Proof.

\[
\frac{\vdash \text{Pre } U_0 t \quad (T)}{t \ast \lambda' \in U_0 \quad \bot \ast \lambda' \in S} \quad (L. B.3(iii))
\]

\[
\frac{U_0 \equiv_{wb*} U_1 \quad t \ast \lambda' \in U_0 \quad \delta}{t \ast \lambda' \in S \quad U_1} \quad \text{(1)}
\]

\[
\frac{}{\text{false}} \quad \text{(2)}
\]

Where \(\delta\) stands for the following branch:

\[
\frac{\vdash t \ast y' \in S \quad t \in T_0 \quad t \neq \bot}{t \ast y' \in S} \quad (T)
\]

\[
\frac{\vdash y \ast \lambda' \in U_1 \quad \text{Pre } U_1 y \quad \delta}{y \ast \lambda' \in U_1} \quad (L. A.5)
\]

\[\text{false}\]

Note that the ability to distinguish between \(Z_C\) and \(Z_\bot\) types is a crucial factor in the above proof: the proof steps labelled \((T)\) denote the use of proposition 2.3 in [24]. This is an admissible axiom for \(Z_C\), in which every term of type \(T\) is a member of the corresponding carrier set\footnote{In \(Z_C\) we call these natural carrier sets which explicitly exclude bindings that contain at least one observation bound to \(\bot\) (see appendix A for further detail).}. It is not admissible for \(Z_\bot\) as terms may involve \(\bot\) values. Hence, this proof step is valid because SB-refinement is defined in \(Z_C\) (section 6.2).

Proposition 6.15

The following rule is derivable:

\[
U_0 \equiv_{wb*} U_1 \quad t \in S[\text{wp } U_1 C] \\
\frac{}{t \in \text{wp } U_0 S'[C]}
\]
An analysis of total correctness refinement models for partial relation semantics II

Proof.

\[
\begin{align*}
\delta_0 : & \quad t \in \text{wp} U_0 \quad \text{t} \in S^{\delta} & \text{(1)} \\
& \quad t_{0}^* \in U_0 \quad \text{L. B.3(i)} & \quad \text{t} \in S^{\delta} & \text{(3)} \\
& \quad t_{0}^* \in U_0 & \quad \text{L. 4.5(i)} & \text{(3)} \\
\end{align*}
\]

\[
\begin{align*}
\delta_{0} & \quad \text{U}_0 \equiv_{\text{wb}_{\bullet}} \text{U}_1 \\
\delta_{1} & \quad \text{t} \in \text{wp} U_0 \quad \text{S}[\alpha] \quad \text{t} \in S^{\delta} & \text{(1)} \\
\end{align*}
\]

Where \(\delta_0 \) is:

\[
\begin{align*}
\delta_0 : & \quad t \in \text{wp} U_0 \quad \text{t} \in S^{\delta} & \text{(2)} \\
& \quad t_{2} \in \text{wp} U_1 \quad \text{Pre} U_1 t_2 & \text{(2) L. 6.14} \\
\end{align*}
\]

and \(\delta_1 \) is:

\[
\begin{align*}
\delta_1 : & \quad \text{y} \in \text{wp} U_1 \quad \text{Pre} U_1 \text{y} & \text{(4)} \\
& \quad \text{y} \in \text{wp} U_1 \quad \text{y} \in S^{\delta} & \text{(4)} \\
\end{align*}
\]

Where \(\alpha \) stands for the following branch:

\[
\begin{align*}
\alpha : & \quad \text{t} \in \text{wp} U_1 \quad \text{t}_{0} \in S^{\delta} & \text{(4)} \\
& \quad \text{t} \in \text{wp} U_1 \quad \text{t}_{0} \in \text{S}[\alpha] & \text{(4)} \\
\end{align*}
\]

The following theorem is immediate:

Theorem 6.16

\[
\begin{align*}
U_0 \equiv_{\text{wb}_{\bullet}} U_1 \\
\text{U}_0 \equiv_{\text{wpb}} \text{U}_1 \\
\end{align*}
\]

Together theorems 6.13 and 6.16 show that WPB-refinement and WB_{\bullet}-refinement are equivalent.

In conclusion, we have established that the theories of WPB-refinement, SB-refinement and WB_{\bullet}-refinement are all equivalent.
7 Conclusions and future work

In this paper, we introduced a weakest precondition interpretation for specifications whose semantics is based on partial relations. This was influenced, at least in part, by early work carried out by [26, 27] involving partial relation semantics and weakest preconditions as developed in [13] and thoroughly discussed in, for example, [18], [21] and [14]. We established three refinement characterisations based on this interpretation: \textit{WP-refinement} characterising operation refinement, \textit{WPF-refinement} characterising data-refinement with forward simulation and \textit{WPB-refinement} characterising data-refinement with backward simulation. By reformulating these as theories, rather than as sufficient conditions for refinement, we established a framework, based on the logic for Z, which allowed a comprehensive analysis of their relationships with other notions of refinement. We demonstrated, in sections 3, 5 and 6, that each of the refinement theories based on the weakest precondition semantics is equivalent to a corresponding standard approach based on lifted-totalisation. We also indicated that each of them is equivalent to a corresponding proof-theoretic notion (one of the “S” family of refinements) characterising refinement in terms of natural properties. The central question we posed earlier has been answered by the investigation: we see now how simulations interact with the postconditions in a weakest precondition framework for data-refinement based on partial relation semantics.

Each member of the “S” family of refinements is an entirely proof-theoretic notion, characterising refinement directly in terms of the language and the behaviour of preconditions and two basic observations regarding the properties one expects in a refinement: preconditions do not strengthen and postconditions do not weaken. In data-refinement, these two properties must hold in the presence of forward simulation (SF-refinement) and backward simulation (SB-refinement). By proving equivalence between members of the “WP” family and respective members of both the “S” family and the “W__” family of refinements, we showed, indirectly, that the standard relational completion approaches are equivalent to the fundamental proof-theoretic characterisations, each of which guarantees the two rudimentary properties above. In fact we have seen that the \bot value, underlying the standard model-theoretic approaches, plays a crucial role in assuring that preconditions do not strengthen during refinement (lemmas 3.13, 5.14 and 6.14). Indeed we will, in the third and fourth part of this series of papers, discuss this in detail and examine both the conceptual and the mathematical roles of the \bot value in model-theoretic data-refinement, the extent to which the standard relational completion approach is canonical, and the extent to which it is arbitrary. This is accomplished by generalising the wide spectrum of model-theoretic operation refinement characterisations given in [11] to forward and backward simulation theories. These are based on other notions of relational completion such as the \textit{strict} (chaotic) lifted totalisation [4] and the \textit{non-lifted} totalisation (based on a revised notion of preconditions) [11]. In this work we advocate a different approach from [39] and [10] by taking SF-refinement and SB-refinement to be the fundamental characterisations of refinement, rather than (what we denote as) W___refinement and W___refinement. In other words, we take SX-refinement (were “X” stands for the \textit{orientation} of the simulation) as normative: these are our prescription for data-refinement, and another X-theory is acceptable providing it is at least sound with respect to it. Such an approach has two major advantages: first, we establish a clear normative framework based on unquestionable properties: we shall see that
whenever a potential theory fails to be sound with respect to the normative theory, we can pinpoint the grounds for that failure, in terms of the two basic properties concerning preconditions and postconditions and this aids us in isolating the problem and to construct representative counterexamples, illuminating relational completion, in general, and the non-lifted totalisation underlying data-refinement, in particular. Second, having a normative theory for investigating the relationships amongst various candidate theories evidently simplifies the process by identifying similarities in the proofs and thus avoiding unnecessary repetitions; it also enables us to compare details of the proofs and therefore to illuminate phenomena emerging from mathematical consequences of the various methods for lifting the underlying relations. Finally, another interesting purely mathematical observation arising from several proofs in sections 3, 5 and 6 is the several uses of the law of excluded middle. We suspect that these results are strictly classical, and there appear to be many other examples of this in refinement theory: abandoning the constructive approach for Z which was investigated in, for example, [22] and [23] may then be inevitable.

8 Acknowledgements

Moshe Deutsch is supported by the British Council through an ORS award. Special thanks for particularly important discussions and comments go to Steve Reeves, Ray Turner, Lindsay Groves, Greg Reeve, David Streader, Mark Utting, Sam Steel and Jim Woodcock.

References

[12] M. Deutsch, M. C. Henson, and S. Reeves. Results on formal stepwise design in Z. In 9th Asia
An analysis of total correctness refinement models for partial relation semantics II

To appear.

A Specification logic - a synopsis

In this appendix, we will revise a little Z logic, settling some notational conventions in the process. This is included for convenience only and the reader may need to consult [24] and [11] at least in order to fully understand our notational and meta-notational conventions. Our mathematical account takes place in a simple conservative extension Z^C of Z, the core Z-logic of [24]. This provides a convenient basis, in particular a satisfactory logical account of the schema calculus, upon which the present work can be formalised.

A.1 Schemas

Z^C is a typed theory in which the types of higher-order logic are extended with schema types whose values are unordered, label-indexed tuples called bindings. For example, if the T_i are types and the z_i are labels (constants) then:

$$[\cdots z_i : T_i \cdots]$$

is a (schema) type. Values of this type are bindings, of the form:

$$\langle \cdots z_i, t_i, \cdots \rangle$$

where the term t_i has type T_i.

The symbols \preceq, \land and \lor denote the schema subtype relation, and the operations of schema type intersection and (compatible) schema type union. We let U (with diacriticals when necessary) range over operation schema expressions. These are sets of bindings linking, as usual before (unprimed) observations with after (primed) observations. This captures the informal account to be found in the literature (e.g. [15, 33, 39]). We can always, then, write the type of such operation schemas as $P(T^m \lor T^{rolf})$ where T^m is the type of the input sub-binding and T^{rolf} is the type of the output sub-binding. We also permit binding concatenation, written $t_0 \bullet t_1$ when the alphabets of t_0 and t_1 are disjoint. This is, in fact, exclusively used for partitioning bindings in operation schemas into before and after components, so the terms involved are necessarily disjoint. We lift this operation to sets (of appropriate type):

$$C_0 \bullet C_1 \triangleq \{ z_0 \bullet z_1 \mid z_0 \in C_0 \land z_1 \in C_1 \}$$

The same restriction obviously applies here: the types of the sets involved must be disjoint. In this way reasoning in Z becomes no more complex than reasoning with binary relations.

We simplify the introduction and elimination rules for schema composition (provided in [24]). A composition of two operation schemas $U_0 \supset U_1$ has the type $P(T_0 \lor T_1)$ where, as expected, U_0 is of type $P(T_0 \lor T_2)$ and U_1 is of type $P(T_2 \lor T_1)$.

Proposition A.1

The following rules are derivable (the usual sideconditions apply to the eigenvariable y):

$$\frac{t_0 \bullet t'_0 \in U_0 \quad t_2 \bullet t'_2 \in U_1}{U_C^+} \quad \frac{t_0 \bullet t'_0 \in U_0 \supset U_1 \quad t_0 \bullet y' \in U_0 \quad y \bullet t'_1 \in U_1 \vdash P}{U_C^-}$$

We introduce a notational convention in order to avoid the repeated use of filtering in the context of equality propositions.
An analysis of total correctness refinement models for partial relation semantics II

Definition A.2
Let $T \preceq T_0$ and $T \preceq T_1$.

$$t_0^T =_T t_1^T \iff {t_0 \mid T = t_1 \mid T}$$

The only modification we need to make in Z^\bot_C is to include the new distinguished terms which are explicitly needed in the approach taken in [39]. Specifically: the types of Z_C are extended to include terms \bot_T for every type T. There are, additionally, a number of axioms which ensure that all the new \bot_T values interact properly, e.g.

$$\bot_{\{z_0 : T_0, \ldots, z_n : T_n\}} = \langle z_0 \mapsto \bot_{T_0}, \ldots, z_n \mapsto \bot_{T_n}\rangle$$

In other words, $\bot_{\{z_0 : T_0, \ldots, z_n : T_n\}}$ is the only axiom concerning distinguished bindings, hence, binding construction is non-strict with respect to the \bot_T values.

Finally, the extension of Z^\bot_C which introduces schemas as sets of bindings and the various operators of the schema calculus is undertaken as usual (see [24]) but the carrier sets of the types must be adjusted to form what we call the natural carrier sets which are those sets of elements of types which explicitly exclude the \bot_T values:

Definition A.3
Natural carriers for each type are defined by closing:

$$N = \{ z \mid z \neq \bot_N \}$$

under the operations of cartesian product, powerset and schema set.\footnote{The notational ambiguity does not introduce a problem, since only a set can appear in a term or proposition, and only a type can appear as a superscript.}

As a result the schema calculus is hereditarily \bot-free:

Definition A.4 (Semantics for atomic schemas)

$$[T \mid P] = \{ z \mid z \in T \land z.P \}$$

Note that this definition draws bindings from the natural carrier of the type T. As a consequence, writing $t(\bot)$ for any binding satisfying $t.x = \bot$, we have:

Lemma A.5

$$t(\bot) \in U \quad \text{false}$$

We will also need the extended carriers. These are defined for all types as follows:

Definition A.6

$$T_\bot = T \cup \{ \bot_T \}$$

A.2 Preconditions

We can formalise the idea of the precondition of an operation schema (the domain of the relation between before and after states that the schema denotes) to express the partiality involved.

Definition A.7
Let $T^{in} \preceq V$.

$$\text{Pre } U \ x^V \iff \exists x \in U \ \bullet x =_{p^{in}} x$$

Clearly, the preconditions of on an operation schema, in general, will not be the whole of T^{in}. It is in this sense that operation schemas denote partial relations.
B Relational completion

In this appendix, we review the chaotic relational completion operator (lifted totalisation) discussed in [11] and [12]. We define this operator in line with the intentions described in [39], chapter 16. We will write T^* for the set $T^m \ast T_{\perp}^{out'}$.

Definition B.1

\[\hat{U} = \{ z_0 \ast z_1' \in T^* \mid \text{Pre } U z_0 \Rightarrow z_0 \ast z_1' \in U \} \]

Then the following introduction and elimination rules are derivable:

Proposition B.2

\[
\frac{t_0 \ast t_1' \in T^* \quad \text{Pre } U t_0 \vdash t_0 \ast t_1' \in U}{t_0 \ast t_1' \in \hat{U}} \quad (\ast^+) \quad \frac{t_0 \ast t_1' \in \hat{U}}{t_0 \ast t_1' \in U} \quad (\ast^-)
\]

\[
\frac{t_0 \ast t_1' \in \hat{U}}{t_0 \ast t_1' \in T^*} \quad (\ast^*)
\]

Lemma B.3

The following extra rules are derivable for lifted-totalised sets:

\[
\frac{U \subseteq \hat{U}}{t \in U} \quad (i) \quad \frac{\bot \in \hat{U}}{t \ast \bot \in \hat{U}} \quad (ii) \quad \frac{\neg \text{Pre } U t \ast t \in T_{\perp}^m}{t \ast \bot' \in \hat{U}} \quad (iii)
\]

\[
\frac{\neg \text{Pre } U t_0 \ast t_0 \in T_{\perp}^m \quad t_1' \in T_{\perp}^{out'}}{t_0 \ast t_1' \in \hat{U}} \quad (iv)
\]

Lemmas B.3(i – iv) demonstrate that definition B.1 is consistent with the intentions described in [39] (chapter 16) and [10] (chapter 2): the underlying partial relation is contained in the completion; the \(\bot \) element is present in the relation, and more generally, each value outside the precondition maps to every value in the range of the relation, including \(\bot \).