This thesis is dedicated to my Parents
for their endless love, support and encouragement.

ii
Acknowledgements

First and foremost, I wish to thank my parents for giving me the gift of education from the best institutions and for supporting me throughout my life.

It is with immense gratitude that I acknowledge the support and help of my supervisor, Professor Edward Tsang. It is he who introduced me to computational finance and to constraint satisfaction problems. Without his guidance and constant assistance this thesis would not have been possible.

It gives me great pleasure to acknowledge the support and help of my supervisor, Professor Qingfu Zhang, who introduced me to computational intelligence and meta-heuristic optimization algorithms.

I would like to thank my committee chair, Dr. Francisco Sepulveda, who has offered guidance and support throughout the years of my degree.

I wish to thank Mrs Marisa Bostock, the postgraduate research administrator of our department, for always helping with my requests over the years I have studied here.

Finally, I cannot find words to express my gratitude to my dearest friend, Sisi Zhou. Her emotional support over all these years has made it possible for me to complete my journey.
Abstract

Multi-objective problems are a category of optimization problem that contains more than one objective function and these objective functions must be optimized simultaneously. Should the objective functions be conflicting, then a set of solutions instead of a single solution is required. This set is known as Pareto optimal.

Multi-objective optimization problems arise in many real world applications where several competing objectives must be evaluated and optimal solutions found for them, in the presence of trade offs among conflicting objectives. Maximizing returns while minimizing the risk of stock market investments, or maximizing performance whilst minimizing fuel consumption and hazardous gas emission when buying a car are typical examples of real world multi-objective optimization problems. In this case a number of optimal solutions can be found, known as non-dominated or Pareto optimal solutions. Pareto optimal solutions are reached when it is impossible to improve one objective without making the others worse.

Classical ways to address this problem used direct or gradient based methods that rendered them insufficient or computationally expensive for large scale or combinatorial problems. Other difficulties attended the classical methods, such as problem knowledge, which may not be available, or sensitivity to some problem features. For example, finding solutions on the entire Pareto optimal set can only be guaranteed for convex problems. Classical methods for generating the Pareto front set aggregate the objectives into a single or parametrized function before search. Thus, several run and parameter setting are performed to achieve a set of solutions that approximate the Pareto optimals.

Consequently new methods have been developed, based on computer experiments with meta-heuristic algorithms. Most of these meta-heuristics implement some sort of stochastic search method, amongst which ‘Evolutionary Algorithm’ is garnering much attention. It possesses several characteristics that make it a desirable method for confronting multi-objective problems. As a result, a number of studies in recent decades have developed or modified the Multi-objective Optimization Evolutionary Algorithm (MOEA) for different purposes. This algorithm works with a population of
solutions which are capable of searching for multiple Pareto optimal solutions in a single run. At the same time, only the fittest individuals in each generation are offered the chance for reproduction and representation in the next generation. The fitness assignment function is the guiding system of MOEA. Fitness value represents the strength of an individual.

Unfortunately, many real world applications bring with them a certain degree of noise due to natural disasters, inefficient models, signal distortion or uncertain information. This noise affects the performance of the algorithm’s fitness function and disrupts the optimization process. This thesis explores and targets the effect of this disruptive noise on the performance of the MOEA.

We study the noisy Multi-objective Optimization Problem (MOP) and modify the Multi-objective Optimization Evolutionary Algorithm based on Decomposition (MOEA/D) to improve its performance in noisy environments. To achieve this, we will combine the basic MOEA/D with the ‘Ordinal Optimization’ technique to handle uncertainties. The major contributions of this thesis are as follows.

• First, MOEA/D is tested in a noisy environment with different levels of noise, to give us a deeper understanding of where the basic algorithm fails to handle the noise.

• Then, we extend the basic MOEA/D, to improve its noise handling, by using the ordinal optimization technique. This creates MOEA/D+OO, which will outperform MOEA/D in terms of diversity and convergence in noisy environments. It is tested against benchmark problems of varying levels of difficulty.

• Finally, to test real world application of MOEA/D+OO, we solve a noisy portfolio optimization with the proposed algorithm. The portfolio optimization problem is a classic one in finance that faces investors wanting to maximize a portfolio’s return while minimizing risk of investment. The latter is measured by standard deviation of the portfolio’s rate of return. This double objective clearly makes it a multi-objective problem.
Contents

List of Figures viii
List of Tables xi
List of Algorithms xii
List of Acronyms xiii
List of Publications xv

1 Introduction 1
1.1 Sources of Uncertainty 2
1.2 Thesis Motivation 2
1.3 Thesis Contribution 4
1.4 Thesis Outline 5

2 Background and Literature Review 6
2.1 Optimization Theory 7
2.1.1 Elements of an Optimization Problem 7
2.1.2 Classification of Optimization Methods 7
2.1.3 Classification of Optimization Problems 8
2.1.4 Multi-objective Optimization Problems 8
2.1.5 Classification of an MOP 12
2.2 Traditional Methods of Solving MOP 14
2.2.1 The Weighted Sum Method 14
2.2.2 ε-Constraint Method 15
2.2.3 Value Function Method 16
2.3 Multi-objective Evolutionary Algorithm 16
2.3.1 Evolutionary Algorithm 16
2.3.2 Multi-objective Optimization Problems using EAs 17
2.3.3 Major Issues in MOEAs 18
2.3.4 Classification of MOEAs 20
2.4 MOEA/D as a Framework 22
2.4.1 Decomposition Methods 22
2.4.2 Subproblems 25
2.4.3 Neighbourhood 26
2.4.4 General Framework 26
2.5 Ordinal Optimisation Technique 29
2.5.1 Introduction 29
2.5.2 Vector Ordinal Optimization 32
2.6 Noisy MOEAs 35
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Mapping between the solution space and the objective space [1]</td>
<td>9</td>
</tr>
<tr>
<td>2.2</td>
<td>Illustration of Pareto front and Pareto set [2]</td>
<td>11</td>
</tr>
<tr>
<td>2.3</td>
<td>Illustration of Nadir and Ideal points [1]</td>
<td>12</td>
</tr>
<tr>
<td>2.4</td>
<td>Decomposing MOP to N Subproblems</td>
<td>23</td>
</tr>
<tr>
<td>2.5</td>
<td>MOEA/D solve N subproblems simultaneously</td>
<td>23</td>
</tr>
<tr>
<td>2.6</td>
<td>Tchebycheff Decomposition Method</td>
<td>24</td>
</tr>
<tr>
<td>2.7</td>
<td>Pareto front constructed by optimal solutions of each subproblems</td>
<td>25</td>
</tr>
<tr>
<td>2.8</td>
<td>Illustration of neighbouring relation in MOEA/D. (T is the size of neighbourhood)</td>
<td>26</td>
</tr>
<tr>
<td>2.9</td>
<td>Generalized concept of Ordinal Optimization [3]</td>
<td>32</td>
</tr>
<tr>
<td>2.10</td>
<td>Illustration of Layers [3]</td>
<td>34</td>
</tr>
<tr>
<td>3.1</td>
<td>HV: Area that is dominated by solution set</td>
<td>44</td>
</tr>
<tr>
<td>3.2</td>
<td>The evolved Pareto front of FON under the influence of noise levels (a)1%, (b)2%, (c)5%, (d)10% and (e)20% by MOEA/D</td>
<td>52</td>
</tr>
<tr>
<td>3.3</td>
<td>The evolved Pareto front of KUR under the influence of noise levels (a)1%, (b)2%, (c)5%, (d)10% and (e)20% by MOEA/D</td>
<td>53</td>
</tr>
<tr>
<td>3.4</td>
<td>The evolved Pareto front of ZDT1 under the influence of noise levels (a)1%, (b)2%, (c)5%, (d)10% and (e)20% by MOEA/D</td>
<td>54</td>
</tr>
<tr>
<td>3.5</td>
<td>The evolved Pareto front of ZDT3 under the influence of noise levels (a)1%, (b)2%, (c)5%, (d)10% and (e)20% by MOEA/D</td>
<td>55</td>
</tr>
<tr>
<td>3.6</td>
<td>The evolved Pareto front of ZDT4 under the influence of noise levels (a)1%, (b)2%, (c)5%, (d)10% and (e)20% by MOEA/D</td>
<td>56</td>
</tr>
<tr>
<td>3.7</td>
<td>The evolved Pareto front of ZDT6 under the influence of noise levels (a)1%, (b)2%, (c)5%, (d)10% and (e)20% by MOEA/D</td>
<td>57</td>
</tr>
<tr>
<td>3.8</td>
<td>MOEA/D’s trace of performance metrics for (a) FON, (b) KUR, (c) ZDT1, (d) ZDT3, (e) ZDT4, (f) ZDT6</td>
<td>58</td>
</tr>
<tr>
<td>4.1</td>
<td>Performance Metrics of MOEA/D+OO in presence of different noise levels for noisy FON problem</td>
<td>68</td>
</tr>
<tr>
<td>4.2</td>
<td>Performance Metrics of MOEA/D+OO in presence of different noise levels for noisy KUR problem</td>
<td>69</td>
</tr>
<tr>
<td>4.3</td>
<td>Performance Metrics of MOEA/D+OO in presence of different noise levels for noisy ZDT1 problem</td>
<td>70</td>
</tr>
<tr>
<td>4.4</td>
<td>Performance Metrics of MOEA/D+OO in presence of different noise levels for noisy ZDT3 problem</td>
<td>71</td>
</tr>
<tr>
<td>4.5</td>
<td>Performance Metrics of MOEA/D+OO in presence of different noise levels for noisy ZDT4 problem</td>
<td>72</td>
</tr>
<tr>
<td>4.6</td>
<td>Performance Metrics of MOEA/D+OO in presence of different noise levels for noisy ZDT6 problem</td>
<td>73</td>
</tr>
</tbody>
</table>
4.7 Pareto Front of noisy FON under the influence of noise level at (a)1%,
(b)2%, (c)5%, (d)10%, (e)20% by MOEA/D+OO. 74
4.8 Pareto Front of noisy KUR under the influence of noise level at (a)1%,
(b)2%, (c)5%, (d)10%, (e)20% by MOEA/D+OO. 75
4.9 Pareto Front of noisy ZDT1 under the influence of noise level at (a)1%,
(b)2%, (c)5%, (d)10%, (e)20% by MOEA/D+OO. 76
4.10 Pareto Front of noisy ZDT3 under the influence of noise level at (a)1%,
(b)2%, (c)5%, (d)10%, (e)20% by MOEA/D+OO. 77
4.11 Pareto Front of noisy ZDT4 under the influence of noise level at (a)1%,
(b)2%, (c)5%, (d)10%, (e)20% by MOEA/D+OO. 78
4.12 Pareto Front of noisy ZDT6 under the influence of noise level at (a)1%,
(b)2%, (c)5%, (d)10%, (e)20% by MOEA/D+OO. 79
4.13 Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for FON with
1% noise 80
4.14 Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for FON with
2% noise 80
4.15 Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for FON with
5% noise 80
4.16 Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for FON with
10% noise 80
4.17 Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for FON with
20% noise 81
4.18 Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for KUR with
1% noise 81
4.19 Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for KUR with
2% noise 81
4.20 Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for KUR with
5% noise 81
4.21 Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for KUR with
10% noise 82
4.22 Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for KUR with
20% noise 82
4.23 Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for ZDT1
with 1% noise 82
4.24 Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for ZDT1
with 2% noise 82
4.25 Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for ZDT1
with 5% noise 83
4.26 Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for ZDT1
with 10% noise 83
4.27 Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for ZDT1
with 20% noise 83
4.28 Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for ZDT3
with 1% noise 83
4.29 Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for ZDT3
with 2% noise 84
List of Figures

4.30 Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for ZDT3 with 5% noise 84
4.31 Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for ZDT3 with 10% noise 84
4.32 Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for ZDT3 with 20% noise 84
4.33 Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for ZDT4 with 1% noise 85
4.34 Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for ZDT4 with 2% noise 85
4.35 Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for ZDT4 with 5% noise 85
4.36 Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for ZDT4 with 10% noise 85
4.37 Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for ZDT4 with 20% noise 86
4.38 Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for ZDT6 with 1% noise 86
4.39 Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for ZDT6 with 2% noise 86
4.40 Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for ZDT6 with 5% noise 86
4.41 Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for ZDT6 with 10% noise 87
4.42 Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for ZDT6 with 20% noise 87
5.1 MOEA/D results for portfolio optimization problem with 60 assets (a) without noise, (b) 1%, (c) 2%, (d) 5%, (e) 10%, (f) 20% ... 99
5.2 MOEA/D results for portfolio optimization problem with 60 assets (a) without noise, (b) 1%, (c) 2%, (d) 5%, (e) 10%, (f) 20% ... 100
5.3 MOEA/D+OO results for portfolio optimization problem with 30 assets (a) without noise, (b) 1%, (c) 2%, (d) 5%, (e) 10%, (f) 20% ... 101
5.4 MOEA/D+OO results for portfolio optimization problem with 30 assets (a) without noise, (b) 1%, (c) 2%, (d) 5%, (e) 10%, (f) 20% ... 102
5.5 Algorithm A is better than B ... 103
5.6 MOEA/D+OO vs. MOEA/D with respect to mean, standard divination and range of return for noisy portfolio optimization problem ... 104
A.1 True Pareto front of ZDT1 ... 128
A.2 True Pareto front of ZDT3 ... 128
A.3 True Pareto front of ZDT4 ... 129
A.4 True Pareto front of ZDT6 ... 129
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Create subproblems with evenly distributed weight vectors</td>
<td>25</td>
</tr>
<tr>
<td>3.1</td>
<td>Definition of the test functions</td>
<td>47</td>
</tr>
<tr>
<td>3.2</td>
<td>Performance metric values of estimated Pareto front by MOEA/D for noisy FON</td>
<td>50</td>
</tr>
<tr>
<td>3.3</td>
<td>Performance metric values of estimated Pareto front by MOEA/D for noisy KUR</td>
<td>51</td>
</tr>
<tr>
<td>3.4</td>
<td>Performance metric values of estimated Pareto front by MOEA/D for noisy ZDT1</td>
<td>51</td>
</tr>
<tr>
<td>3.5</td>
<td>Performance metric values of estimated Pareto front by MOEA/D for noisy ZDT3</td>
<td>51</td>
</tr>
<tr>
<td>3.6</td>
<td>Performance metric values of estimated Pareto front by MOEA/D for noisy ZDT4</td>
<td>51</td>
</tr>
<tr>
<td>3.7</td>
<td>Performance metric values of estimated Pareto front by MOEA/D for noisy ZDT6</td>
<td>51</td>
</tr>
<tr>
<td>4.1</td>
<td>Performance metrics values of estimated Pareto front by MOEA/D+OO for noisy FON</td>
<td>66</td>
</tr>
<tr>
<td>4.2</td>
<td>Performance metrics values of estimated Pareto front by MOEA/D+OO for noisy KUR</td>
<td>67</td>
</tr>
<tr>
<td>4.3</td>
<td>Performance metrics values of estimated Pareto front by MOEA/D+OO for noisy ZDT1</td>
<td>67</td>
</tr>
<tr>
<td>4.4</td>
<td>Performance metrics values of estimated Pareto front by MOEA/D+OO for noisy ZDT3</td>
<td>67</td>
</tr>
<tr>
<td>4.5</td>
<td>Performance metrics values of estimated Pareto front by MOEA/D+OO for noisy ZDT4</td>
<td>67</td>
</tr>
<tr>
<td>4.6</td>
<td>Performance metrics values of estimated Pareto front by MOEA/D+OO for noisy ZDT6</td>
<td>67</td>
</tr>
<tr>
<td>5.1</td>
<td>Result of portfolio optimization returns with 30 assets by MOEA/D</td>
<td>98</td>
</tr>
<tr>
<td>5.2</td>
<td>Result of portfolio optimization returns with 60 assets by MOEA/D</td>
<td>98</td>
</tr>
<tr>
<td>5.3</td>
<td>Result of portfolio optimization returns with 30 assets by MOEA/D+OO</td>
<td>103</td>
</tr>
<tr>
<td>5.4</td>
<td>Result of portfolio optimization returns with 60 assets by MOEA/D+OO</td>
<td>103</td>
</tr>
</tbody>
</table>
List of Algorithms

2.1 DE .. 19
2.2 MOEA/D ... 28
2.3 Ordinal Optimization Procedure 32
2.4 Vector Ordinal Optimization 34
3.1 MOEA/D for Solving Noisy MOP 42
4.1 MOEA/D with OO 63
List of Acronyms

MOEA Multi-objective Optimization Evolutionary Algorithm
SPEA Strength Pareto Evolutionary Algorithm
NSGA-II Non-dominated Sorting Genetic Algorithm-II
ELDP Experimental Learning Directed Perturbation
GASS Gene Adaptation Selection Strategy
MOEA/D Multi-objective Optimization Evolutionary Algorithm based on Decomposition
MOP Multi-objective Optimization Problem
OO Ordinal Optimization
MOEA/D+OO Combined MOEA/D algorithm with OO technique
VOO Vector Ordinal Optimization
SVR Support Vector Regression
ANN Artificial Neural Network
PF Pareto Front
PS Pareto-optimal Set
NTSPEA Noise Tolerant Version of SPEA
MOEA-RF Robust Feature Multi-objective Evolutionary Algorithm
MNSGA-II Modified Non-dominated Sorting Genetic Algorithm-II
MOPSEA Multi-objective Probabilistic Selection Evolutionary Algorithm
SOP Single-objective Optimization Problem
DMOEAA-DD Dynamical Multi-Objective Evolutionary Algorithm with Domain Decomposition
OGA Order Based Genetic Algorithm
GOO Genetic Ordinal Optimization
OCBA Optimal Computing Budget Allocation
CPSOO Combined Particle Swarm with Ordinal Optimization
List of Acronyms

PSO Particle Swarm Optimization

VaR Value-at-risk

CVaR Conditional value at Risk
List of Publications

• Chapter 4: MOEA/D With Ordinal Optimization Technique for Handling Noisy Problems.

 1. Hamid R. Jalalian, Qingfu Zhang and Edward Tsang, “Combining MOEA/D with Ordinal Optimization for Noise Handling Purpose”, to be submitted to journal of “Computational Intelligence”.

• Chapter 5: Noisy Portfolio Optimization Problem.

Many real life applications involve multiple (potentially conflicting) objective functions that must be optimized simultaneously. In the case of conflicting objectives, no single solution can be optimal to all objectives. Thus, a strong and powerful optimization algorithm is required to be capable of finding a set of solutions that will represent the best tradeoffs amongst the objectives. This set of solutions is known as the Pareto optimal solutions.

Evolutionary algorithms are a class of stochastic search methods which are capable of estimating Pareto optimal solutions in a single run. They are able to do this because the algorithms update their population of solutions at each generation. As a result, this method is proving itself to be very effective at solving complicated multi-objective optimization problems.

Finding a good Pareto-optimal estimation is not the only challenge facing the opti-
mization algorithm, however. Uncertainty is also a disruptive phenomenon, which characterizes many real world optimization problems in various forms. In recent decades numerous studies [4–6] have been conducted into different types of uncertainty and these are listed in the next section.

1.1 Sources of Uncertainty

- Uncertainty of environment: for example, temperature, moisture, perturbation in speed or dynamic fitness function.

- Uncertainty of optimization parameters: for instance, parameters of a solution subject to change or perturbation after implementation, but still required to function for manufacturing tolerance. This type of uncertainty is known as a search for robust solution.

- Uncertainty introduced due to unavailability of original fitness function or where analytical fitness function is computationally very expensive. In this instance, the solution must be approximated.

The work presented in this thesis addresses the third version of uncertainty, which is also known as the optimization of noisy problems.

1.2 Thesis Motivation

A very important and also very sensitive research area is the study of noise, and the ways to cope with it, in the evolutionary multi-objective optimization algorithm. There are a number of studies that suggest different strategies or noise handling techniques for tackling disruptive noise by very well known MOEA. For instance,

- A Noise Tolerant Version of SPEA (NTSPEA) by Buche [7]. Strength Pareto Evolutionary Algorithm (SPEA) introduced by Zitzler in 1999 [8]. And Buche proposed three modifications for handling noise for this particular dominance based MOEA, namely i) *Domination dependent lifetime*, which defines a lifetime for the
solution that is related to the solution’s dominance. ii) Re-evaluation of solution: instead of deleting the expired solutions, they are added to the population, giving them a second chance to reach a good solution and survive. iii) Extended update of the secondary population, which reduces loss of information by updating all non-expired lifetime solutions rather than only the current population. [7]

- A Robust Feature Multi-objective Evolutionary Algorithm (MOEA-RF). Goh and Tan proposed three noise handling techniques and incorporated them into a simple MOEA, naming the new algorithm MOEA-RF. The three noise handling features are the Experimental Learning Directed Perturbation (ELDP), the Gene Adaptation Selection Strategy (GASS) and a possibilistic archiving methodology [9].

- A Modified Non-dominated Sorting Genetic Algorithm-II (MNSGA-II). Deb introduced the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) and Babbar introduced a modification of its ranking scheme to handle noise. The new scheme allows the algorithm to expand its Rank 1 frontier by adding close neighbouring solutions to the rank. It also incorporates a procedure to keep only reliable solutions in the final non-dominated solution set. [10].

MOEA/D, which is a very well established decomposition-based MOEA introduced for the first time by Zhang and Li in 2007 [11], will be utilised in this thesis to confront problems with noise.

As with the other algorithms detailed in Section 1.2, MOEA/D will be investigated in this thesis in a noisy environment. In order to reach our stated goal, certain steps must be taken, the first of which being an answer to the following questions.

- How effective is MOEA/D in the presence of noise?

It is important to analyse the performance of MOEA/D in the presence of different levels of noise, from low to medium to high. Will its performance deteriorate with increased noise? If so, by how much? For measuring these qualities different performance metrics are implemented (see section 3.4).
• What technique best assists MOEA/D to handle noise?

As most of the studies in noisy environment cover MOEAs base on dominance therefore their methods for handling noise will not be useful for MOEA/D which is a decomposition base algorithm. Also their results are not comparable because, parameter setting matters in different algorithms. Thus We are seeking a novel technique for handling noise in conjunction with the basic MOEA/D. Our technique will ideally cope with noisy problems and estimate more reliable solutions for them.

Finally, we will assess the new algorithm as to its suitability for real life application.

1.3 Thesis Contribution

As it mentioned earlier that we will study MOEA/D in presence of different noise levels the major contribution of this thesis are listed as following:

1. This is the first piece of research that studies the effect of noise on the performance of MOEA/D.

2. We have proved that the performance of MOEA/D deteriorates as noise level intensifies.

3. In chapter 4 a new algorithm will be introduced base on MOEA/D framework that is called MOEA/D+OO. It is a modified version of MOEA/D which is significantly better suited to handling noise.

4. It is proved that MOEA/D+OO significantly outperforms MOEA/D in the noisy multi-objective optimization problem.

5. We study noisy portfolio optimization for first time by adding noise only to return objective function.

6. In this thesis noisy portfolio optimization problem is used as real world application to test the algorithms.
7. We demonstrate that MOEA/D+OO is better than MOEA/D in handling noise at portfolio optimization problem.

8. Finally we figure it out that Portfolio optimization problem is very sensitive to noise.

1.4 Thesis Outline

The organization of this thesis is as follows:

Chapter 2 provides a review of multi-objective evolutionary algorithms. In this chapter, the fundamentals of evolutionary algorithm and MOP will be summarized. Chapter 3 assesses the performance of MOEA/D in a noisy environment. This chapter explains the theory and methodologies that have been used to examine and assess the algorithm. Chapter 4 proposes a noise handling technique to handle noisy problems. A new algorithm is developed that combines Ordinal Optimization (OO) with MOEA/D. Chapter 5 details the introduction of algorithm into a real life problem: a classical finance problem in a noisy environment. Finally Chapter 6 presents conclusions, which will wrap up this thesis and propose possible future works.
This chapter will briefly discuss the principals of optimization theory and the different types of optimization problems. A literature review of previous research studies into multi-objective optimization problems is delivered, along with a discussion of traditional methods and evolutionary algorithms for solving multi-objective problems. Then, the major issues in multiobjective optimization evolutionary algorithms (MOEAs) are discussed, alongside the classification of different MOEAs.

In this thesis MOEA/D will be used as a base algorithm for further research. As a result a detailed review has been prepared in section 2.4 following with noisy MOEAs literature review.

The final part covers the principals of ordinal optimization theory (OO) that are going to be used for noise handling in this study to assist MOEA/D in solving noisy multi-objective problems.
2.1 Optimization Theory

In the face of limited resources such as funds, time, space and so on, optimization has become an important area of research within the computational sciences. Different disciplines clearly need to optimize different quantities or possibilities subject to the specific constraints of their area.

In this section, a succinct general summary and classification of the optimization problem is provided, alongside a look at other issues in this area such as different optima types or different problems.

2.1.1 Elements of an Optimization Problem

There are three major elements which are in common with any optimization problem as following [14]:

- **An objective function.** A system model, representing the quantity to be optimized.
- **A set of variables.** These impact the value of the objective function.
- **A set of constraints.** These restrict the values that can be assigned to the variables.

The goal of any optimization method is to assign values, from a given domain, to the variables of objective function to be optimized such that all constraints are satisfied. In this research, the search space is denoted by Ω. In the case of a constraint problem, a solution is found in the feasible space that is denoted by \mathcal{F}. Always, $\mathcal{F} \subseteq \Omega$.

2.1.2 Classification of Optimization Methods

The different classifications are made according to specific characteristics of the methods used. For instance, optimization methods can be divided into two major classes [14], dictated by the solutions found, as follows.
• **Local search algorithm:** information local to the current solution is used to produce a new solution.

• **Global search algorithm:** the entire domain is searched for optima.

Further classifications can be introduced as follows:

• **Stochastic:** this method uses random elements to transform a candidate solution into a new solution.

• **Deterministic:** in which no random elements are applied.

2.1.3 Classification of Optimization Problems

As regards the many characteristics presented by optimization problems, classifications can be proposed according to the following [14]:

• **Number of variables:** single variable to multi-variable.

• **Type of variable:** continuous or discrete.

• **Degree of non-linearity:** linear, quadratic and etc.

• **Type of constraint:** boundary, equality and/or inequality.

• **Number of optima:** optimization problems can have one (unimodal) or many (multimodal) solutions.

• **Number of optimization criteria:** if only one objective function requires optimization, it is a ‘Single Objective Problem’. If more than one objective function must be optimised simultaneously, the problem becomes ‘Multi-objective’.

2.1.4 Multi-objective Optimization Problems

Most real-world search and optimization problems naturally involve multiple objectives. The extremist principle mentioned above cannot only be applied to one objective when the rest of objectives are also important. Different solutions may produce tradeoffs
Definition 1 (The Multi-Objective Optimization Problem) A general MOP includes a set of \(n \) decision variables, a set of \(m \) objective functions and a set of \(r \) constraints. Objective functions and constraints are functions of the decision variables. Optimization goal is to

\[
\begin{align*}
\min\; & y = F(x) = (f_1(x), f_2(x), \ldots, f_m(x)) \\
\text{s.t.}\; & C(x) = (c_1(x), c_2(x), \ldots, c_r(x)) \leq 0 \\
& x = (x_1, x_2, \ldots, x_n) \in \Omega \\
& x_i^{(L)} \leq x_i \leq x_i^{(U)}\; \text{for}\; i = 1, 2, \ldots, n \\
& y = (y_1, y_2, \ldots, y_m) \in \Lambda
\end{align*}
\]

where \(x \) is the decision vector, \(y \) is the objective vector, \(\Omega \) is denoted as the decision space, and \(\Lambda \) is the objective space. Mapping between the solution space and the objective space illustrates in figure 2.1. The constraints \(C(x) \leq 0 \) determine the set of feasible solutions [2].

The solutions \(x \in \Omega \) of continuous MOPs are vector of \(n \) real variables. nevertheless the solutions of discrete MOPs are vector of \(n \) integer variables.

Figure 2.1: Mapping between the solution space and the objective space [1]
The definition of optimality is not straightforward, due to totally conflicting, non-
conflicting or partially conflicting objective functions. It is therefore necessary to outline
the specific definition of ‘optimum’ for the MOP. For MOP the optimum means a balance
point between all of the objectives. In other words, improving any one objective can
bring about the degrading of other objectives. Thus, our task is to find solutions that
balance these tradeoffs. A significant number of solutions may exist for our MOP, so in
order to tackle this task, it is necessary to put forward a set of definitions.

Most multi-objective optimization algorithms use the concept of dominance in their
search.

Definition 2 (Dominance) A solution \(x_1 \) is said to dominate another solution \(x_2 \),
if both conditions 1 and 2 are true:

1. The solution \(x_1 \) is no worse than \(x_2 \) in all objectives, or \(f_i(x_1) \leq f_i(x_2) \) for all
 \(i = 1, 2, \ldots, m \).

2. The solution \(x_1 \) is strictly better than \(x_2 \) in at least one objective, or \(f_j(x_1) < f_j(x_2) \) for at least one
 \(j \in \{1, 2, \ldots, m\} \).

If either of the above conditions is violated, the solution \(x_1 \) does not dominate
solution \(x_2 \). If \(x_1 \) does dominate solution \(x_2 \) (or mathematically \(x_1 \preceq x_2 \)), it is customary
to note any of the following [15]:

- \(x_2 \) is dominated by \(x_1 \)
- \(x_1 \) is non-dominated by \(x_2 \)
- \(x_1 \) is non-inferior to \(x_2 \).

Definition 3 (Pareto Optimal Set) For a given MOP 2.1, the Pareto Optimal Set
(see Figure 2.2), \(P^* \), is defined as:

\[
P^* := \{ x \in \Omega \mid \exists x' \in \Omega \ F(x') \preceq F(x) \}.
\] \hspace{1cm} (2.2)

The Pareto-optimal Set (PS) contains all balanced tradeoffs which represent the MOP
solutions.
Definition 4 (Pareto Front) For a given MOP 2.1, and a Pareto Optimal Set, P^*, the Pareto Front PF^* is defined as:

$$PF^* := \{ u = F(x) \mid x \in P^* \}. \quad (2.3)$$

The Pareto front contains all the objective vectors corresponding to decision vectors that are not dominated by any other decision vector (see Figure 2.2).

1. The Pareto front contains the Pareto-optimal solutions and, in the case of a continuous front, it divides the objective function space into two parts: non-optimal solutions and infeasible solutions.

2. A Pareto front is not necessarily continuous.

3. The Pareto front can be concave, convex, or a combination of either.

4. The Pareto front may continue towards infinity, even in the case of boundary constrained decision variables.

5. Due to mapping, neighbouring points in a Pareto front (objective function space) are not necessarily neighbours in the decision variable space.
2.1.4.1 Ideal and Nadir Points (Objective Vectors)

We assume that the objective functions are bounded over feasible region, two special objective vectors ideal and nadir point are defining the lower and upper bounds of PF. Figure 2.3 illustrates both points in the objective space of a hypothetical two objective minimization problem. Definitions of both points are given below.

Definition 5 (Ideal point) A point \(z^{idl} = \{z_1, \cdots, z_m\} \) in the objective space is called an ideal point if it has the best value for each objective: \(z^{idl}_i = \min_{x \in \Omega} f_i(x) \quad \forall \ i = \{1, \ldots, m\} \) for problem 2.1.

Definition 6 (Nadir point) A point \(z^{nad} = \{z_1, \cdots, z_m\} \) in the objective space is called a nadir point if it has the worst value for each objective: \(z^{nad}_i = \max_{x \in \Omega} f_i(x) \quad \forall \ i = \{1, \ldots, m\} \) for problem 2.1.

![Figure 2.3: Illustration of Nadir and Ideal points [1].](image)

2.1.5 Classification of an MOP

Multi-objective optimization problems have been around for at least the last four decades and many algorithms have been evolved to solve them. Researchers have attempted to classify these algorithms according to various considerations. Cohon [12] classified them into the following two types:

- Generating methods.
• Preference-based methods.

In the former, a few non-dominated solutions are generated for the decision-maker, who then chooses one solution from the obtained non-dominated solutions. No *a priori* knowledge of any objective is used. On the other hand, in the preference-based methods, some known preference for each objective is used in the optimization process. Hwang and Masud [13] and later Miettinen [1] fine-tuned the above classification and suggested the following four classes:

• No-preference methods.

• A posteriori methods.

• A priori methods.

• Interactive methods.

The no-preference methods assume no information about the importance of objectives, but a heuristic is used to find a single optimal solution. It is important to note that although no preference information is used, these methods do not make any attempt to find multiple Pareto-optimal solutions. Posteriori methods do use preference information on each objective and iteratively generate a set of Pareto-optimal solutions. The classical method of generating Pareto optimal solutions requires some knowledge of the algorithmic parameters that will guarantee the finding of a Pareto-optimal solution. On the other hand, A priori methods use more information about the preferences of objectives and usually find one preferred Pareto-optimal solution. Interactive methods use the preference information progressively during the optimization process as the decision-maker interacts with the optimization program during the optimization process. Typically the system provides an updated set of solutions and lets the decision-maker consider whether or not to change the weighting of individual objective functions.

The popularity of using a weighted sum of objective functions is obvious: it is trivial to implement and it effectively converts a multi-objective problem to a single objective one. A known drawback is that in the case of a high number of objective
functions, the appropriate weighting is painful to choose a priori by the decision-maker. Furthermore, scaling of the individual objective function values is often required due to different function value ranges. With regard to the popularity of a posteriori techniques, especially Pareto-optimization techniques, there are two obvious candidate explanations:

1. The decision-makers are willing to perform unbiased searches.

2. The decision-makers are unwilling or unable to assign priorities without having further information about the other potential/effective solutions.

2.2 Traditional Methods of Solving MOP

Classical ways to address this problem used direct or gradient based methods that rendered them insufficient or computationally expensive for large scale or combinatorial problems. Other difficulties attended the classical methods, such as problem knowledge, which may not be available, or sensitivity to some problem features. For example, finding solutions on the entire Pareto optimal set can only be guaranteed for convex problems. Classical methods for generating the Pareto front set, aggregate the objectives into a single or parametrized function before search. Thus, several run and parameter setting are performed to achieve a set of solutions that approximate the Pareto optimal.

2.2.1 The Weighted Sum Method

The idea behind this method is to associate each objective function with a weighting coefficient and minimize the weighted sum of the objective. In this way, multiple objective functions are transformed into a single objective function. More accurately, the multi-objective optimization problem is modified into the following problem, known as a weighted problem:

\[
\begin{align*}
\text{minimize} & \quad \sum_{i=1}^{m} w_i f_i(x) \\
\text{s.t} & \quad x \in \Omega
\end{align*}
\]
where \(w_i \geq 0 \) for all \(i = \{1, ..., m\} \) and \(\sum_{i=1}^{m} w_i = 1 \).

Theorem 1 The solution of the weighted problem (2.4) is weakly Pareto optimal.

Theorem 2 The solution of the weighted problem (2.4) is Pareto optimal if the weighting coefficient is positive, that is \(w_i > 0 \) for all \(i = 1, ..., m \).

Theorem 3 Let the multi-objective optimization problem be convex if \(x^* \) is Pareto optimal, then there exists a weighting vector \(w \) \((w_i \geq 0, i = \{1, ..., m\}, \sum_{i=1}^{k} w_i = 1) \) such that \(x^* \) is a solution of the weighted problem (2.4).

For the proof of all theorems, refer to [1].

Theorem 1 to 3 state the solution of weighting method is Pareto optimal if weight coefficients are all positive [1]. The disadvantage of this method is its limits to convex problem, because all the solution cannot be found for nonconvex problems.

2.2.2 \(\varepsilon \)-Constraint Method

In the \(\varepsilon \)-constraint method one of the objective functions is selected to be optimized and all the other objective functions are converted into constraints by setting an upper bound to each of them. The problem to be solved is now of the form

\[
\begin{align*}
\text{minimize} & \quad f_l(x) \\
\text{s.t} & \quad f_i(x) \leq \varepsilon_i, \quad \forall \ i = 1, ..., m, \ i \neq l \\
& \quad x \in \Omega
\end{align*}
\]

(2.5)

where \(l \in \{1, ..., m\} \). Problem (2.5) is called an \(\varepsilon - \text{constraint problem} \).

Theorem 4 The solution of \(\varepsilon - \text{constraint problem} \) (2.5) is weakly Pareto optimal.

Proof in [1].

Theorem 4 states that the solutions of equation 2.5 are weakly Pareto optimal without any additional assumptions. After this the theorem 5 about proper Pareto optimality of the solutions of the \(\varepsilon - \text{constraint} \) problem can be introduced as following,
Theorem 5 A decision vector \(x^* \in \Omega \) is Pareto optimal if and only if it is a solution of \(\varepsilon \)-constraint problem (2.5) for every \(l = 1, \ldots, m \), where \(\varepsilon_i = f_i(x^*) \) for \(i = 1, \ldots, m \), \(i \neq l \).

Proof in [1].

2.2.3 Value Function Method

In this method, the decision maker must be able to give an accurate and explicit mathematical form of the value function \(U : \mathbb{R}^m \to \mathbb{R} \) that represents his or her preferences globally. This function provides a complete ordering in the objective space.

\[
\text{maximize} \quad U(f(x)) \\
\text{s.t} \quad x \in \Omega
\]

(2.6)

The value function problem is then ready to be solved by any single objective optimization method.

Theorem 6 Let the value function \(U : \mathbb{R}^m \to \mathbb{R} \) be strongly decreasing. Let \(U \) attain its maximum at \(f^* \). Then, \(f^* \) is Pareto optimal.

Proof in [1].

2.3 Multi-objective Evolutionary Algorithm

2.3.1 Evolutionary Algorithm

Evolution is an optimization process that improves the ability of a system to survive in competitive environments. Inspired by Charles Darwin’s theory of ‘natural selection’, evolutionary computation has adopted the following principles of Darwinian natural selection theory.

- Selection \(\iff \) Survival of the fittest.

- Two parents generate two offspring \(\iff \) Crossover or Recombination.
Small changes in the location (decision variables) of the offspring \iff Mutation.

Evolutionary algorithm (EA) is a stochastic optimization method. The earliest study in this field dates back to the 1950s, and since the 1970s, several evolutionary methodologies have been proposed. All of these approaches operate on a set of candidate solutions. Using strong simplifications, this set is subsequently modified by two basic principles: selection and variation. While ‘selection’ mimics the natural world’s competition for reproduction and resources among living beings, the other principle, variation, imitates the natural ability to create new beings by means of recombination and mutation.

Evolutionary algorithms such as evolution strategies and genetic algorithms are often used for solving optimization problems that are too complex to be solved using traditional mathematical programming methods [14]. EAs require little knowledge of the problem to be solved and are easy to implement, robust, and inherently parallel.

2.3.2 Multi-objective Optimization Problems using EAs

To solve an optimization problem by EA, one must be able to evaluate the objective (cost/loss) functions for a given set of input variables. Due to their ease of implementation, and fitness for parallel computing, EAs are eminently suited to complex problems. Most real-world problems involve simultaneous optimization of several often conflicting objectives. Multi-objective EAs are able to find a set of optimal trade-offs in a single run [2,15].

EAs work with ‘individuals’ in a population. The number of individuals in the population is called ‘popsize’ and each individual has two properties:

- Location, known as ‘decision variables’.
- Quality, known as ‘fitness value’.

After obtaining the fitness values of all individuals, the selection process generates a ‘mating pool’. Only individuals with higher fitness values are allowed into the mating pool. Selected individuals are called ‘parents’.
Then, two parents might be selected randomly from the mating pool to generate two ‘offspring’. After which, the newly generated individuals replace the old ‘parents’ and another generation starts.

2.3.3 Major Issues in MOEAs

The MOEAs regulate the following processes in order to achieve a good approximation of a Pareto front.

2.3.3.1 Reproduction Operators

Reproduction is the process of producing offspring from selected parents. Thus an operator needs to combine or change the value of parents in decision space to create new individuals.

The operator that combines the genome of parents to produce a new individual is called ‘Crossover’. ‘Mutation’ changes the value of genes in a chromosome randomly. From the first Evolutionary algorithm introduced to the current day, different reproduction operators have been proposed, including:

(i) Binary reproduction operators such as, one point, two point or uniform crossover and Gaussian or uniform mutation [2,15].

(ii) Floating point operators such as, simulated binary crossover (SBX) [16], unimodal normal distribution operator (UNDX) [17], deferential evolution (DE) [18] and simplex crossover (SPX) [19] or polynomial mutation [15] and Gaussian mutation operator [20]. The floating point operator shows better performance when decision variables are floating point values (Real numbers).

In this thesis we will use DE operator and Gaussian mutation operator.

2.3.3.1.1 Deferential Evolution (DE) In our study we employ DE to create new individuals. DE is a parallel direct search method which creates new candidate solutions by choosing three random individuals from neighbourhood. DE generates new decision vectors by adding the weighted difference between two parental vectors to a third one. This step is called mutation [18]. The mutated vector are then mixed with the decision
variables from another predetermined vector to create trial vector. Parameter mixing is often referred to ‘crossover’. There are two predetermine parameters such as differential weight \(F \in [0, 2] \) and crossover probability \(CR \in [0, 1] \) that need to be set up either by practice or specific method for instance rules of thumps for selecting parameter [18]. The basic DE algorithm described in algorithm 2.1.

Algorithm 2.1 DE

1. **Input:** 1) Three randomly selected individuals \(x^1, x^2, x^3 = (x_1, x_2, ..., x_n) \).
2) \(F \) differential weight.
3) \(CR \) crossover probability

2. **Output:** New individual \(x' = (x'_1, x'_2, ..., x'_n) \).

3. **Step 1** Create vector \(U \) with uniformly distributed number \(U = (u_1, u_2, ..., u_n) \)

4. **Step 2** if \(u_i < CR \) then \(x'_i = x^1_i + F \times (x^3_i - x^2_i) \)

5. **Step 3** otherwise set \(x'_i = x^1_i \) for \(i = 1, 2, ..., n \).

Sometimes, the newly created candidate falls out of bounds of the decision variables space. We address this problem by simply replacing the candidate value violating the boundary constraints with the closest boundary value [21].

2.3.3.1.2 Gaussian Mutation If uniformly distributed number \(u \sim U(0, 1) \) be greater than mutation probability \(P_m \) then this operator adds a Gaussian distributed random value to the decision variables of chosen individual. If it falls out of the boundary of the decision variables then the violating values replace with closest boundary value [22,23]. The Gaussian density function is

\[
f_{G(0,\sigma^2)}(x) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{x^2}{2\sigma^2}}
\]

where \(\sigma^2 \) is the variance [23].

2.3.3.2 Fitness Assignment

As only the best performing individuals get the chance to reproduce, it is important to generate a function that will determine the fitness of each individual, known as ‘Fitness Function’. A fitness function maps a fitness vector to a single value which is quality or rank of individual in the population. Moreover fitness function guides MOEAs to search
into the promising area in the search space. Pareto dominance ranking, indicator based and decomposition based rankings are three major fitness assignment strategies used in MOEAs.

2.3.3.3 Convergence

It is important for any optimization framework to find actual solutions of optimization problems or make a good estimation of solutions. This process is called convergence. As with any optimization technique, converging to the true Pareto front is important for all MOEAs. Algorithms are comparative in their converging speed [24,25].

2.3.3.4 Diversity

Obtaining a good distribution of generated solutions along the Pareto front is called ‘Diversity’. A diversity maintenance technique avoids convergence of population to a single solution. Therefore, it is very important. It is a fact that an even spread of discovered solutions is more desirable and different techniques have been established to preserve diversity of solutions along the Pareto front such as, niche sharing [26], clustering [27], crowding density estimation [28], and nearest neighbour method [29].

2.3.3.5 Elitism

The process that guarantees survival of the best individual in the current population to the next generation is called ‘Elitism’. To ensure this, a copy of the current population will be kept, without being mutated; in other word, elitism in MOEAs make sure that the best (or elite) solutions are kept in a safe place between generations.

2.3.4 Classification of MOEAs

There are a diverse range of MOEA classifications in the literature, classified according to the mode of determining fitness function or specific techniques, such as a Priori, Progressive(Interactive) or a Posteriori techniques [2].
In this study we classify the MOEA according to their fitness assignment methods and divide these into three categories including:

2.3.4.1 MOEAs based on Pareto Dominance

One of the most popular approaches to fitness assignment appears to be the Pareto-based ranking. Since its inception, Pareto-based MOEAs such as MOGA [30], PAES [31], NSGA-II [32], SPEA-II [33] have emerged as the most widely used. However, both Fonseca and Fleming [34], [30] have highlighted the inadequacy of an MOEA based on Pareto assignment in high dimensional objectives. In this situation, the Pareto-based MOEA may not be able to produce sufficient selection pressure and also its performance does not scale well with respect to the number of objectives [35].

2.3.4.2 MOEAs Based on Decomposition

This approach aggregates the objectives into a single scalar to approximate the Pareto front. It was in fact the failure of Pareto-based MOEAs in the high dimensional objective space that turned attention to decomposition-based methods. MOGLS [36] and MOEA/D [11] are the two most successful algorithms in this category.

2.3.4.3 MOEAs Based on Indication

Here, the fitness function seeks to rank population members according to their performance in relation to the optimization goal. MOEAs then introduces a utility function to be maximized. For example, one possibility would be to sum up the indicator values for each population member with respect to the rest of the population [37], [38]. IBEA which was introduced by Zitzler and Künzli is an example of an indicator-based evolutionary algorithm. For more information see [37].

The Non-dominated Sorting Genetic Algorithm, NSGA-II, is undoubtedly the most well-known and referenced algorithm in the multi-objective literature. It is a GA with random mating of individuals within a population. So it is based on obtaining a new population from the original one by applying the typical genetic operators (selection,
crossover and mutation); then, the individuals in the two populations are sorted according to their rank, and the best solutions are chosen to create a new population. In the case of having to select some individuals with the same rank, a density estimation based on measuring the crowding distance to the surrounding individuals belonging to the same rank is used to get the most promising solutions [32]. In 2014 the new version of this algorithm introduced base on adaptive in updating and including new reference points on the fly. The resulting adaptive NSGA-III is shown to provide a denser representation of the Pareto-optimal front [39, 40].

The Strength Pareto Evolutionary Algorithm, SPEA2, works also on a random mating of individuals within a population as NSGA-II does. In this algorithm, each individual has a fitness value assigned which is the sum of its strength raw fitness and a density estimation. The algorithm applies the selection, crossover, and mutation operators to fill an archive of individuals; then, the non-dominated individuals of both the original population and the archive are copied into a new population. If the number of non-dominated individuals is greater than the population size, a truncation operator based on calculating the distances to the \((k – th)\) nearest neighbour is used [29].

2.4 MOEA/D as a Framework

This section describes the algorithm we have considered for this research. In this thesis, MOEA/D has been studied for handling noisy MOP. Therefore, this framework will be reviewed as following:

MOEA/D for finding a set of \(N\) Pareto optimal solutions, decomposes a MOP to \(N\) Single-objective Optimization Problem (SOP) (see Figure 2.4). Then solve each subproblem interdependently. (See Figure 2.5).

2.4.1 Decomposition Methods

Decomposition is a general approach to solving a problem by breaking it up into smaller ones and solving each of the smaller ones separately, either in parallel or sequentially. [41].
Decomposition in optimization is an old idea, and appears in early work on large-scale LPs [42]. The original primary motivation for decomposition methods was to solve very large problems that were beyond the reach of standard techniques.

Decomposition of a MOP could be done at different levels. i) Decision variables, in [43] authors introduced a Dynamical Multi-Objective Evolutionary Algorithm with Domain Decomposition (DMOEAD) by using domain decomposition technique. The decomposition in decision variables implemented by splitting the original set of decision variables into subgroups and optimize each group as a subproblem. ii) Objective functions, in [11, 44] authors introduced algorithms that decompose a MOP to multiple scalar optimization subproblems.

In following Tchebycheff decomposition method is introduced that will be used later in this thesis.
2.4.1.1 Tchebycheff Decomposition Method

The Tchebycheff approach was introduced in [45]. The aggregation function of this method is mathematically defined as follows,

\[
\text{minimize} \quad g^{tc}(x|\lambda, z^*) = \max_{i \in 1, \cdots, m} \lambda_i |f_i(x) - z_i^*| \\
\text{subject to} \quad x \in \Omega \subset \mathbb{R}^n.
\] (2.7)

where \(z^* = (z_1^*, \cdots, z_m^*) \) is the reference point. \(z_i^* = \min\{f_i(x) \mid x \in \Omega\} \) for each \(i = 1, \cdots, m \). The reference point guides the search procedure to converge. (see Figure 2.6).

According to the following theorem for any Pareto optimal solution \(x^* \) there is a weight vector \((\lambda_1, \lambda_2) \) such that \(x^* \) is the optimal solution to (2.7).

Theorem 7 If the Tchebycheff problem 2.7 has a unique solution, then it is Pareto-optimal.

Proof of this theorem is available in [1].

![Figure 2.6: Tchebycheff Decomposition Method.](image)
Chapter 2: Background and Literature Review

Table 2.1: Create subproblems with evenly distributed weight vectors

<table>
<thead>
<tr>
<th>Weight Vectors</th>
<th>Subproblems</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\lambda^1 = (1, 0)$</td>
<td>$g(x, \lambda^1) = 1 \times f_1 + 0 \times f_2$</td>
</tr>
<tr>
<td>$\lambda^2 = (0.9, 0.1)$</td>
<td>$g(x, \lambda^2) = 0.9 \times f_1 + 0.1 \times f_2$</td>
</tr>
<tr>
<td>$\lambda^3 = (0.8, 0.2)$</td>
<td>$g(x, \lambda^3) = 0.8 \times f_1 + 0.2 \times f_2$</td>
</tr>
<tr>
<td>$\lambda^N = (0, 1)$</td>
<td>$g(x, \lambda^N) = 0 \times f_1 + 1 \times f_2$</td>
</tr>
</tbody>
</table>

2.4.2 Subproblems

Generating a diverse set of weight vectors is intransitive for decomposition of the multiobjective problem into multiple single objective problems in order to achieve a good representation of Pareto Front (PF). Table 2.1 shows the process of creating subproblems base on aggregation function. Every weight vector defines a subproblem and a diverse set of weight vectors are leading to a diverse range of subproblems and this result in diversity of Pareto optimal solutions. Because, as it is mentioned in section 2.4.1.1 that optimal solution of 2.7 is a Pareto optimal solution for 2.1. This fact clearly illustrated in figure 2.7. The authors in [11] introduced a method for generating uniform weight vectors.

![Pareto front constructed by optimal solutions of each subproblems.](image-url)
2.4.3 Neighbourhood

Neighbourhood relation in MOEA/D introduced by computing the Euclidean distances between any two weight vectors and then work out the T closest weight vectors to each weight vector. T is the size of neighbourhood which set by decision makers. For each $i = 1, \cdots, N$ set $B(i) = \{i_1, \cdots, i_T\}$ where $\lambda^{i_1}, \cdots, \lambda^{i_T}$ are the closest weight vectors to λ^i. Note that each weight vector is closest vector to itself and the neighbourhoods of weight vectors remain unchanged during the whole search process. Figure (2.8) illustrates the neighbouring relation in MOEA/D. T is a major control parameter in MOEA/D [11]. Because it is a mating restriction. Two solution have a mating chance if they are in the same neighbourhood.

2.4.4 General Framework

In the framework of MOEA/D, a population of scalar optimization subproblems are maintained and each subproblem is formed by the following components:

- Solution x: is the current best solution of this subproblem.
- Weight λ: is the weight vector that characterizes this subproblem and determines its search direction.
- Neighbourhood B: the list for each subproblem that contains the indexes of neighboring subproblems.
After initialization, MOEA/D starts the searching process in its main loop. An offspring generated for each subproblem \(i \) by applying selection, crossover and mutation operators. Thus, two neighbouring subproblems of subproblem \(i \) are selected randomly from \(B(i) \); then, selected solutions produce a new solution \(y \) by applying genetic operators (crossover and mutation). Then \(y \) offer to all subproblems within the neighbourhood of subproblem \(i \). If \(y \) is fitter than any neighbours, then \(y \) will be replaced with that particular neighbour.

A stopping criteria is necessary to stop the algorithm from searching; for instance a predetermined number of generations has been examined in this thesis.

An external population for holding the best solutions is not practical for contentious MOP. Because the final generation represents the best result of MOEA/D for continues problem. But it (elitism) is paying an important role for discrete MOP. For this reason in our experiment in next chapters we will not use the external population as we only focus on continuous MOP.

Finally, the reference point is a vector which direct the algorithm toward optimal solutions. A reference point constructed as \(z^* = (z^*_1, \cdots, z^*_m) \) where \(z^*_i = \min \{ f_i(x) \mid x \in \Omega \} \) for each \(i = 1, \cdots, m \). It can be updated during the search or be fixed as a predetermined parameter. Algorithm 2.2 describes MOEA/D in details and more information is available in [11].

In less than a decade since Zhand and Li introduced MOEA/D in 2007 [11] it has attracted many research interests and numerous research studies have been published in following aspects [46]:

1. Combine MOEA/D with other meta-heuristics, such as simulated annealing [47], and colony optimization [48], particle swarm optimization [49,50], tabu search [51], guided local search [52], deferential evolution [53].

2. Changing the reproducing operators, such as guided mutation operator [54], non-linear crossover and mutation operator [55], differential evolution schemes [53], and a new mating parent selection mechanism [46,56].
Algorithm 2.2 MOEA/D

Input:

- A stopping criterion.
- N: the number of subproblems considered in MOEA/D.
- A uniform spread of the weight vectors: $\lambda^1, \cdots, \lambda^N$.
- T: the number of weight vectors in the neighbourhood of each weight vector.

Output:

- EP or $\{F(x^1), \cdots, F(x^N)\}$.

Step 1) Initialization:

Step 1.1) Set $EP = \emptyset$.

Step 1.2) Compute the Euclidean distances between any two weight vectors. For each subproblem $i = 1, \ldots, N$, set the neighbourhood $B(i) = \{i_1, \ldots, i_T\}$, where $\lambda^{i_1}, \ldots, \lambda^{i_T}$ are the T closest weight vectors to λ^i.

Step 1.3) Generate an initial population x^1, \ldots, x^N randomly.

Step 1.4) Evaluate the population.

Step 1.5) Set the reference point $z = (z_1, \ldots, z_m)$.

Step 2) Update:

For $i = 1, \ldots, N$ do

Step 2.1) Reproduction: Randomly select two solutions from $B(i)$ to generate a new solution y by using genetic operators.

Step 2.2) Improvement: Apply a problem-specific (repair/improvement heuristic) on y to produce y'.

Step 2.3) Update of z: Update the reference point z.

Step 2.4) Update of Neighbouring Solutions: For each index $j \in B(i)$, set $x^j = y'$ if x^j is not fitter than y' regarding to the subproblem j.

Step 3) Stopping Criteria:

If stopping criteria is satisfied stop and return EP or $\{F(x^1), \cdots, F(x^N)\}$ Otherwise, go to Step 2.

3. Research on decomposition techniques. NBI-style Tchebycheff decomposition approach is proposed to solve portfolio optimization problem by authors in [57]. In [58, 59] different decomposition approaches are used simultaneously.

4. Improvement on weight vectors. A predetermined uniformly distributed weight vectors are used to define scaler subproblems in MOEA/D. it reveals that the fixed weight vectors used in MOEA/D might not be able to cover the whole PF very well [47]. Therefore, In [60], authors create a weight vectors predictably base on the distribution of the current weight set. In [61], another weight adjustment
method is developed by sampling the regression curve of objective vectors of the solutions in an external population. Authors in [46] introduce (MOEA/D-AWA) which is an improved version of MOEA/D with adaptive weight vector adjustment.

5. Applications of MOEA/D such as, combinatorial optimization problems namely knapsack problem [47,58], travel salesman problem [47], the flow-shop scheduling problem [51,62], and the capacitated arc routing problem [63]. Or practical engineering problems like antenna array synthesis [64,65], wireless sensor networks [66], robot path planning [67], missile control [68], a multi-objective optimization for rest-to-rest manoeuvres of flexible spacecraft [69], portfolio management [57] and rule mining in machine learning [70] have also been investigated.

2.5 Ordinal Optimisation Technique.

Ordinal Optimization is a ranking and selection approach to solve simulated optimization problem [71].

2.5.1 Introduction

Ordinal optimization concentrates on ordinal comparison and achieves a much faster convergence rate [3]. The idea behind ordinal optimization is to effect a strategic change of goals.

2.5.1.1 Problem Statement

Suppose a general simulation optimization problem was defined as follows:

\[
\min_{x \in \Omega} J(x) \equiv E[f(x, \epsilon)]
\]

(2.8)

Where \(J(x)\) is the performance measure of the problem, \(L(x, \epsilon)\) is the sample performance, \(x\) is a system solution and \(\Omega\) is the set containing all the feasible solutions. If \(J(x)\) is a scalar function, the problem is a single objective optimization problem;
whereas if it was to be a vector valued function, the problem would become a multi-objective optimization problem. The standard approach for estimating the expectation of performance $E[f(x, \epsilon)]$ is the mean performance measure as follows,

$$\bar{J} = \frac{1}{n} \sum_{i=1}^{n} f(x, \epsilon_i)$$ \hspace{1cm} (2.9)

Where, n shows the number of simulation samples for solution i.

Due to its huge search space, lack of structure and high uncertainty, solving problem 2.8 is very challenging either computationally or analytically. The fact that many real world optimization problems remain unsolved is partly due to these very issues. A large number of human-made systems imply combinatorics, symbolic or categorical variables which make the calculus or real variable-based methods less applicable. Search-based methods are required to tackle the difficulty of those models. These allow for a narrowing of the search for the optimum to a ‘good enough’ subset rather than the perfect best. After all, real world solutions to real world problems all involve compromise towards ‘good enough’ rather than perfect.

Further more, it is undoubtedly much easier to simply determine which solution is better than to struggle to find out how much better.

2.5.1.2 Basic Ideas

The fundamental principles of the ordinal optimization method are as follows $[3, 73]$:

1. Goal softening.

2. Ordinal Comparison.

3. ‘Order’ converges exponentially fast.

4. ‘Order’ is much more robust against noise than ‘value’.

The first principle, goal softening, holds that it is much easier to find a top-n solution than to find out the global best.
The second principle, namely ordinal comparison, holds that it is much easier to determine which solution is better than how much better. For example, were you to receive two parcels, it would be far easier to identify which one was heavier than to work out the exact weight difference between them.

The third principle, in which order converges faster than value, has been analysed in [72] (pp. 160-163). In addition, the interested reader could refer to [3].

2.5.1.3 Notifications and Concepts

Assume that a subset of search space Ω, defined as ‘Good enough’ and denoted by G, which could be the top-g solution or top-n% of the solutions of the sampled set of M solutions. The size of the number G is denoted as $g (|G| = g)$. Moreover, by selecting some other members of the population, either blindly or by some rules, another subset is defined called ‘Selected Subset’. It is denoted by ‘S’ with the same cardinality as $G (|G| = |S| = g)$. Figure 2.9 illustrates the concept of ordinal optimization.

The question here is: what is the probability that among the set ‘S’ we have at least ‘k’ of the members of G, which is $P\{|G \cap S| \geq k\}$ and represents another concept of ordinal optimization known as ‘Alignment Probability’. It is a measure of the rightness of our selection rules. Alternatively, there are some special cases of alignment probability which are denoted by $P(CS)$ and stands for probability of ‘Correct Selection’ [73]. This probability calculated for discrete systems with blink picking in [3,73].

2.5.1.4 Definitions, terminologies and concepts of OO

Ordinal Optimization uses a crude system model to order the solutions in search space. A crude model is one with a lower computational cost that allows the simulation to converge faster.

In addition, it utilizes a different method to select set S. A selection rule is a procedure that selects the set S based on observed performance of the solutions, such as blind picking or horse racing etc.

The ordinal optimization (OO) procedure is summarized in Algorithm 2.3 [3].
Algorithm 2.3 Ordinal Optimization Procedure

Require: Search Space Ω

Step 1: Pick M random solutions from Ω
Step 2: Specify the size of the good enough set G and alignment level k.
Step 3: Use crude model to estimate the performance of N solutions.
Step 4: Estimate the noise level and the problem type.
Step 5: Calculate s, the size of selected set.
Step 6: Select the observed top-s solutions.
Step 7: Then employ OO theory to ensure there are at least k truly good enough solutions in S with a certain probability.

we study multiobjective optimization problem the concept of OO by itself is not helpful. However in [74] authors extended the concept of OO for vector optimization problems and it is called Vector Ordinal Optimization (VOO). we will implement VOO later in this research study.

2.5.2 Vector Ordinal Optimization

When ordinal optimization was first developed it was initially proposed to solve a stochastic simulation optimization with a single objective and no constraints [3, 74]. Very soon, however, the idea was extended to multi-objective problems, constrained optimization problems and so on [74].
2.5.2.1 Definitions, terminologies and concepts of VOO

Practical problems in the finance or industry sectors involve multiple simulation-based objective functions and, in most cases, decision makers have no prior knowledge as to priority nor appropriate weighting amongst the objective functions.

Different studies have proposed various ways to introduce order amongst the solutions in vector ordinal optimization. The first and most common way is to follow the definition of Pareto front.

Definition 7 (Dominance) Assume that we have two solutions \(x_1 \) and \(x_2 \). \(x_2 \) dominates \(x_1 \), denoted by \(x_2 \prec x_1 \), if both the following conditions hold:

\[
\forall \ i \in \{1, 2, ..., m\}, \ J_i(x_2) \leq J_i(x_1)
\]

\[
\exists \ j \in \{1, 2, ..., m\}, \ J_j(x_2) < J_j(x_1)
\]

where \(m \) is the number of objective functions in the simulation-based optimization problem.

Definition 8 (Pareto frontier) A set of solutions \(L_1 \) is called the Pareto frontier if it contains only the non dominated solutions,

\[L_1 \equiv \{x \mid x \in \Omega, \ \not\exists \ x' \in \Omega, \ s.t. \ x' \prec x\} \]

The concept of Pareto frontier introduced naturally an operator \(\omega \) that map the solution space to the set of Pareto frontier with respect to the objective functions as \(L_1 = \omega(\Omega) \) [74]. The concept of Pareto frontier can extend to a sequence of layers. This can be seen in figure 2.10.

Definition 9 (Layers) A series of solutions \(L_{s+1} = \omega(\Omega \backslash \bigcup_{i=1,2,...,s} L_i) \), \(s = 1, 2, ... \) are called layers. \(A \backslash B \) denotes the set containing all the solutions included un the set \(A \) but not included in the set \(B \).

Without any additional problem information, there are no preferences as to objective
functions and no preferences of solutions in the same layer.

The procedure of VOO is summarized in algorithm 2.4 that will be used later in this thesis.

Algorithm 2.4 Vector Ordinal Optimization

Require: Search Space Ω

Step 1: Pick M random solutions from Ω

Step 2: Use crude model (computationally fast) to estimate the performance of N solutions.

Step 3: Select the observed top-s layers. (selected set S).

Step 4: Evaluate the selected layers with exact model (more refined model) to estimate the optimal solutions.

The second method for introducing order among the solutions is to count the number of solutions that dominate a solution x, denoted as $n(x)$, then to sort all the solutions according to $n(x)$ in an ascending order [75]. Solution x_i is deemed better than x_j if $n(x_i) < n(x_j)$. And solutions x_i and x_j are regarded as equally good solutions if $n(x_i) = n(x_j)$.

An Order Based Genetic Algorithm (OGA) introduced in [76] base on the idea of ordinal optimization to ensure the quality of solution found with a reduction in computational efforts.
Authors in [77] combine OO and Optimal Computing Budget Allocation (OCBA) within the search framework of GA to propose a novel Genetic Ordinal Optimization (GOO) algorithm to solve stochastic travel salesman problem.

In [78] authors incorporate particle swarm along with OO for stochastic simulation optimization problems. The new algorithm Combined Particle Swarm with Ordinal Optimization (CPSOO) applied to solve centralized broadband wireless network problem.

Authors in [78] combine evolution strategy with ordinal optimization to solve wafer testing problem. They called this new algorithm (ES+OO). In their another study [79] they solve the same problem with (GA+OO) that is a combination of genetic algorithm with ordinal optimization.

Ordinal optimization based algorithm also used for hotel booking limits problem in [80] by constructing a crude mode as a fitness evaluation function in Particle Swarm Optimization (PSO) algorithm to select M candidate solutions and then use OCBA to search for a good enough solution.

In this thesis we will use ordinal optimization technique to handle uncertainty for the first time.

2.6 Noisy MOEAs

In real-world problems characterized by noise, precise determination of the fitness value for individual solutions is a major challenge. In that, the noise may be associated with different sources including erroneous sensory measurements and randomized simulations. Such noise causes an uncertainty in the fitness evaluation of potential solutions and eventually adversely affects the search efficiency, convergence and self-adaptation of Evolutionary Algorithms (EAs) and other heuristic search algorithms.

Uncertainty in the context of evolutionary optimisation can be divided in four major categories [4], as follows:

1. Noise: The noisy fitness function ($F(X)$) may be described as:

\[
F(X) = f(X) + \zeta
\]
where \mathbf{X} denotes the parameter-vector, $f(\mathbf{X})$ the fitness function without noise, and ζ the additive noise. In that, though ζ is often assumed to have a Gaussian distribution, it may have non-Gaussian distributions as well. Notably, given the randomness associated with the noise, different fitness values may be obtained for the same solution in different evaluations.

2. Robustness: Here, the parameter-vector is perturbed after the optimal solution has been obtained, and a solution is still required to work satisfactorily. In this case, the expected fitness function ($F(\mathbf{X})$), as below, may be used:

$$F(\mathbf{X}) = f(\mathbf{X} + \delta)$$

where δ represents the perturbation.

3. Fitness approximation: In situations where either an analytical fitness function may not be available or its evaluation may be very expensive, it may need to be approximated based on experimental or simulation data. The approximated fitness function, often referred as the meta-model ought to be used together with the original fitness function as follows:

$$F(\mathbf{X}) = \begin{cases} f(\mathbf{X}), & \text{if the original fitness function is used} \\ f(\mathbf{X}) + E(\mathbf{X}), & \text{if the meta-model is used} \end{cases}$$

where, $E(\mathbf{X})$ is the approximation error.

4. Time-varying fitness functions: Here, the fitness function is deterministic at any point in time but is dependent on time t, and may be described by:

$$F(\mathbf{X}) = f_t(\mathbf{X})$$

Among the above categories, the issue of handling noise in fitness evaluations is often an important one in several domains, including evolutionary robotics [81], evolutionary process optimization [82], and evolution of en-route caching strategies [83]. Towards
addressing this issue, three major approaches have been identified [4], as follows:

1. Explicit Averaging (Fitness Averaging): This calls for estimating the fitness by averaging over a number of samples taken over time. Notably, each sampling may be quite expensive, hence, a balance between the sample size and performance becomes critical. Authors in [84, 85] suggested two adaptation schemes: i) increasing the sample size with generation number, and using higher sample size for individual with higher estimated variance. The author in [86] concludes for small population size, sampling is able to improve the learning performance. Moreover it is also mentioned that sampling dose not help if the population size is generously large.

2. Implicit Averaging (Population Sizing): This calls for negating the effect of noise by increasing the population size. For instance, the authors in [87] have demonstrated that when the population size is infinite, proportional selection is not affected by noise.

3. Modifying Selection: This calls for modifying the selection process in order to cope with noise. For instance, the authors in [88] proposed to derandomize the selection process, and demonstrated that the effect of noise could be significantly reduced without a proportional increase in the computational cost. Notably, this approach has also been studied in the context of multiobjective optimization, where Pareto-dominance is used for selection. In that, the authors in [89] and [90, 91] have proposed that an individual solutions Pareto-rank be replaced by its probability of being dominated.

A number of approaches have also been proposed to reduce the disruptive effect of noise such as population sizing [92, 93], fitness averaging and fitness estimation [94–96], specific selection method [97–99], and Kalman filtering [100].

A few noise handling techniques in MOEAs introduced which include periodic re-evaluation of achieved solutions [7], probabilistic Pareto ranking [90], extended averaging scheme [101], experiential learning directed perturbation [102] and gene adaptation
selection strategy [102], etc.

There are some MOEAs which facilitated by specific noise handling techniques to tackle disruptive impact of noise, for instance NTSPEA [7], Multi-objective Probabilistic Selection Evolutionary Algorithm (MOPSEA) [103], A robust feature multi-objective evolutionary algorithm (MOEA-RF) [9] and MNSGA-II [10].

The authors in [104] examined the effect of noise on both local search and genetic search to understand the potential effects of noise on search space.

Optimization in noisy and uncertain environment is regarded as one of the favourite application domain of evolutionary algorithm [6]. Research in this field of noisy MOEAs is still in its infancy. Compared to its practical relevance the effect of noise and its influence on the performance of MOEAs have gained only little attention in EA research. [7,90,105]

2.7 Conclusions

In this chapter we briefly reviewed the basic concepts of optimization theory by focusing on the multi-objective optimization problem. Having discussed the traditional approaches used to solve these problems, we outlined a modern heuristic method, the ‘Evolutionary Algorithm’, for solving multi-objective optimisation. Then followed a detailed discussion of the major issues confronting multi-objective evolutionary algorithms.

MOEA/D reviewed in this chapter as a framework for optimizing multiobjective problem. We will use MOEA/D as a base algorithm for further research. In following a literature review on noisy MOEAs is provided.

Furthermore, an introduction to the ordinal optimization technique has been explored, covering both single and multi-objective optimization problems. We will combine this technique with MOEA/D algorithm to handle noise.
In the previous chapter we discussed MOEA and its major issues. Noise is one such. It poses a significant challenge to MOEA because, the noise, spread as it is from different sources, causes uncertainty in the fitness evaluation of potential solutions and eventually adversely affects search efficiency, elitism, convergence and self-adaptation of Evolutionary Algorithms (EAs) and other heuristic search algorithms.

Does noise matter in the case of MOEA/D? Will its performance be affected by noise? If so, how seriously? Results obtained in this chapter do reveal a meaningful deterioration in the performance of MOEA/D when noise intensifies. Thus, this chapter will provide answers to the above questions, but in order to get to that point we will first define some common concepts in noisy multi-objective optimization.
3.1 Multi-objective Optimization Problems in Noisy Environments

A noisy MOP is a MOP whose objective function is disrupted by noisy terms. A noisy multi-objective problem can be described as follows:

$$\min F(x) = (f_1(x) + \delta_1, \ldots, f_m(x) + \delta_m)$$

s.t. $x \in \Omega$ \hspace{4cm} (3.1)

where x is a ‘decision vector’ and δ_i for $i = 1, 2, \ldots, m$ are disruptive noises with scalar values.

In this study, an unbiased (zero mean) Gaussian perturbation is added to the objective functions \cite{102}

$$F(X) = f(X) + \delta$$

$$\delta \sim N(0, \sigma^2)$$ \hspace{4cm} (3.2)

where σ^2 denotes the level of noise, while $F(x)$ and $f(x)$ represent the objective functions with and without noise respectively.

In this thesis, it is assumed that noise has a disruptive influence on the value of each individual in the objective space. \cite{9, 90, 91, 95, 96, 106}

3.2 Evolutionary Multi-objective Optimization in Noisy Environments

In this section, we explain how the research reported in this chapter relates to other work in the literature.

To begin with, there are different ways to modelling noise. The majority of them, including this research, use the Gaussian model. In \cite{107}, Arnold and Beyer conducted
a comparison of the influence of Gaussian, Cauchy and χ^2 distributed noise on the performance of evolutionary strategy (ES).

Secondly, most research into noisy optimization focuses on single objective problems [107]. In this thesis, we focus on MOP.

Thirdly, studies on EA for noisy MOPs have been conducted, [5, 9], and a number of approaches have been proposed in recent decades by different studies aimed at decreasing the impact of noise on MOEA such as population sizing [93], fitness estimation [96] and modified selection schemes [9, 98].

Finally, the aim of this thesis is to improve MOEA/D in noisy MOPs. We are not comparing the performance of the proposed methods to others in the literature at this stage. In any case, a beauty contest would not be straightforward or meaningful because different methods could perform better in different problems. Besides, performance could also be affected by the parameters and fitness measures used in different algorithms.

3.3 MOEA/D Algorithm

MOEA/D is a population-based algorithm that decomposes the MOP to N scalar optimization problems and optimizes them simultaneously rather than seeking to solve the MOP as a whole. All traditional mathematical decomposition techniques are applicable such as Weighted Sum, Tchebycheff Approach and so on.

Diversity in the subproblems naturally brings diversity to the population. A properly chosen weight vector and decomposition method can result in an evenly distributed solution along the PF as it described in section 2.4 [108].

In MOEA/D a neighbourhood of subproblems is defined as T closest subproblems. The closeness of subproblems is measured by the Euclidean distance of weight vectors between each subproblem. Subproblems share information such as optimal points with neighbouring subproblems.

In this research, we use MOEA/D with the Tchebycheff decomposition method that is described in section 2.4.1.1. All the steps of this framework are listed in Algorithm
Algorithm 3.1 MOEA/D for Solving Noisy MOP

Input:
- MOP 3.1.
- A stopping criterion;
- N: the number of subproblems considered in MOEA/D.
- A uniform spread of the weight vectors: $\lambda^1, \ldots, \lambda^N$.
- T: the number of the weight vectors in the neighbourhood of each weight vector.

Output:
- $\{F(x^1), \ldots, F(x^N)\}$.

Step 1) Initialization:
- **Step 1.1)** Compute the Euclidean distances between any two weight vectors.
 For each subproblem $i = 1, \ldots, N$, set the neighbourhood $B(i) = \{i_1, \ldots, i_T\}$, where $\lambda^{i_{1}}, \ldots, \lambda^{i_{T}}$ are the T closest weight vectors to λ^i.
- **Step 1.2)** Generate an initial population x^1, \ldots, x^N randomly.
- **Step 1.3)** Evaluate the population.
- **Step 1.4)** Set the reference point $z = (z_1, \ldots, z_m)$.

Step 2) Update:
For $i = 1, \ldots, N$, do
- **Step 2.1)** Reproduction: Randomly select two solutions from $B(i)$ to generate a new solution y by using genetic operators.
- **Step 2.2)** Update of z: Update the reference point z.
- **Step 2.3)** Update of Neighbouring Solutions: For each index $j \in B(i)$, set $x^j = y$ if x^j is not fitter than y regarding to the subproblem j.

Step 3) Stopping Criteria:
If stopping criteria is satisfied stop and return $\{F(x^1), \ldots, F(x^N)\}$ Otherwise, go to Step 2.

3.1 and further details are available in [11] and section 2.4.

3.4 Performance Metrics

Performance metrics play an important role in returning a scalar value to represent the quality of a solution set with respect to a given measure. Due to the nature of MOP several performance metrics are needed to gauge the performance of an algorithm [15,109].

1. Proximity Indicator: The generation gap between PF_{true} and PF_{approx} indicates
the closeness of the approximated Pareto front and true Pareto front. The true Pareto front is the global Pareto optimal set [9, 110]. For ZDT problems, Zitzler and others produced a very good approximation of the true Pareto front on their website\(^1\). Their approximation is also covered in Appendix A. Mathematically, generational distance (GD) is formalized as:

\[
GD = \left(\frac{1}{n_{PF}} \sum_{i=1}^{n_{PF}} d_i^2 \right)^{1/2} \tag{3.3}
\]

where \(n_{PF}\) is the number of elements in \(PF_{true}\) and \(d_i\) is the Euclidean distance (in objective space) between member \(i\) of \(PF_{true}\) and its nearest member of \(PF_{approx}\). Notably, a lower value of GD implies a better approximation of the Pareto front.

2. Diversity Indicator (Maximum Spread): \(MS\) measures how well the true Pareto front is covered by the approximated Pareto front [9, 110]. To assess the diversity of solutions in \(PF_{approx}\) vis-à-vis \(PF_{true}\), the following metric will be used:

\[
MS = \sqrt{\frac{1}{n_{obj}} \sum_{i=1}^{n_{obj}} \left[\frac{\min(f_i^{\max}, F_i^{true}) - \max(f_i^{\min}, F_i^{true})}{F_i^{\max} - F_i^{\min}} \right]^2} \tag{3.4}
\]

where:

- \(n_{obj}\) is the number of objective functions.
- \(f_i^{\min} \& f_i^{\max}\) are the minimum and maximum of \(f_i\) in \(PF_{approx}\).
- \(F_i^{\min} \& F_i^{\max}\) are the minimum and maximum of \(f_i\) in \(PF_{true}\).

Notably, by converging to 1, \(MS\) shows that the approximated Pareto front properly covers the true Pareto front.

3. Distribution Indicator (Spacing): To assess the uniformity of distribution between solutions along \(PF_{approx}\) [9, 110]. the following metric will be used:

\[
S = \left[\frac{1}{n_{PF} - 1} \sum_{i=1}^{n_{PF}} (d_i - \bar{d})^2 \right]^{1/2} \tag{3.5}
\]

\(^1\)http://www.tik.ee.ethz.ch/sop/download/supplementary/testproblems/
\[\bar{d} = \frac{1}{n_{PF}} \sum_{i=1}^{n_{PF}} d_i \]

\(d_i\) is the Euclidean distance between the \(i\)-th member and its nearest neighbor in \(PF\) and \(n_{PF}\) is the number of elements in \(PF_{approx}\). Notably, a smaller value of spacing implies a more uniform distribution of solutions in \(PF_{approx}\).

4. General Quality Indicator: the hypervolume\((HV)\) metric indicates the general quality of a solution set by taking into account its performance in diversity and proximity \([9,110]\). Hypervolume indicates the size of area that is dominated by a solution set as in Fig.3.1 below. A reference point \(O' = (o_1, o_2, ..., o_m)\) is defined where \(o_i\) represents the worst values for objective function \(i\). Finally \(HV\) metrics can be defined as follow:

\[HV = volume \bigcup_{i=1}^{n_{PF}} v_i \] \hspace{1cm} (3.6)

where \(v_i\) is a hypercube between solution \(i\) and the reference point which is constructed as the diagonal corner of the hypercube. Veldhuizen and Lamont expressed this metric as a ratio between the \(PF_{approx}\) and \(PF_{true}\):

\[HVR = \frac{HV(PF_{approx})}{HV(PF_{true})} \] \hspace{1cm} (3.7)
Notably, \(PF_{approx} \) is a good approximation of \(PF_{true} \) if its hypervolume metric value is close enough to the hypervolume metric value of \(PF_{true} \). Consequently it is desirable that the \(HVR \) metric should merge to a value of 1.

3.5 Experiment

The purpose of this experiment is to find the impact of noise on the performance of the MOEA/D. The behaviour of the MOEA/D is tested on different levels of noise, which helps us to detect the destructive effects of noise with some scale. Noises are added to the test functions that are summarized in Section 3.5.2, in the form that is mentioned in Section 3.1.

3.5.1 Design of Experiment

In order to study the impact of noise on MOEA/D, an experiment has been designed to challenge the algorithm in presence of different levels noise, from low (1%, 2%), to medium (5%) to high level (10%, 20%).

In this thesis we implement the DE operation along with Gaussian mutation operator to generate new individual. Both of these operators are reviewed in sections 2.3.3.1.1 and 2.3.3.1.2. In our experiment, DE parameters are set such \((F = 0.5) \) for differential weight and \((CR = 0.5) \) for crossover probability. This setting implemented before (see MOEA/D homepage) therefore we use the same setting as main authors of MOEA/D used before. Then, the new offspring that just produced by DE operator goes through the Gaussian mutation with following mutation probability:

\[
P_m = \frac{1}{\text{Number of Decision Variables}}
\]

Finally, this mutated offspring will be refereed as a new individual to the optimization framework.

The performance of MOEA/D is affected by its parameter setting. The most influential parameters are population size and neighbourhood size as well as maximum
iterations. We adopt the following set up in the experiment:

- Number of subproblems and population size: as MOEA/D decomposes the MOP into \(N \) scalar subproblems and a population of \(N \) solutions \(x^1, ..., x^N \) is maintained, where \(x^i \) is the best solution found so far for the \(i \)-th subproblem. Without loss of generality, a fixed population of one hundred individuals \((N = 100) \) has been considered sufficient for this study. The amount is entirely arbitrary.

- Neighbourhood size: To ensure better exploration and exploitation, attention should be paid to the size of neighbourhood. As a result twenty percent of the population is considered as the neighbourhood size, which gives a good chance for neighbouring solutions to mate [108].

- Number of iterations: The algorithms will stop when maximum generation is reached. In our study a total of 150 iterations will complete the search process. It has been empirically observed that there are no significant improvements after 150 iterations, hence our setting up the algorithm to stop at that point to reduce the computational cost.

Finally, fifty independent simulation runs are conducted for each of the noisy problems. We run our experiments in Matlab.

For noisy research no other similar study such as [9] cover computational cost. At this stage finding a proper and trustworthy method for handling noise is more concerned than other issues such as computational cost and time in noisy optimization research.

3.5.2 Benchmark Problems

To reveal capabilities, possible pitfalls and characteristics of the algorithms researchers use benchmark problems. They have different characteristics such as multi-modality, convexity, discontinuity and non uniformity of the Pareto front. These characteristics may prevent the MOEAs from finding a diverse set of solutions.

Six benchmark problems, FON,KUR,ZDT1,ZDT3,ZDT4 and ZDT6 are selected to be uses in this research. Many researchers have applied these test problems to assess
Table 3.1: Definition of the test functions.

<table>
<thead>
<tr>
<th>Problems (Characteristics)</th>
<th>Variables Number (n); bounds</th>
<th>Objective Functions</th>
</tr>
</thead>
</table>
| FON Non-convex | 3; [-4 , 4] | \(f_1(x) = 1 - \exp(-\sum_{i=1}^{3} (x_i - \frac{1}{\sqrt{3}})^2) \)
\(f_2(x) = 1 - \exp(-\sum_{i=1}^{3} (x_i + \frac{1}{\sqrt{3}})^2) \) |
| KUR Non-convex | 3; [-5 , 5] | \(f_1(x) = \sum_{i=1}^{n} (-10 \exp(-0.2 \sqrt{x_i^2 + x_{i+1}^2})) \)
\(f_2(x) = \sum_{i=1}^{n} (|x_i|^{0.8} + 5 \sin(x_i^2)) \) |
| ZDT1 Convex | 30; [0 , 1] | \(f_1(x) = x_1 \)
\(f_2(x) = g(x)[1 - \sqrt{x_1/g(x)}] \)
\(g(x) = 1 + 9(\sum_{i=1}^{n} x_i)/(n - 1) \) |
| ZDT3 Non-convex Disconnected | 30; [0 , 1] | \(f_1(x) = x_1 \)
\(f_2(x) = g(x)[1 - \sqrt{x_1/g(x)} - \frac{x_1}{g(x)} \sin(10\pi x_1)] \)
\(g(x) = 1 + 9(\sum_{i=2}^{n} x_i)/(n - 1) \) |
| ZDT4 Non-convex Multimodal | 10; \(x_1 \in [0, 1] \)
\(x_i \in [-5, 5] \)
\(i = 2, \ldots, n \) | \(f_1(x) = x_1 \)
\(f_2(x) = g(x)[1 - \sqrt{x_1/g(x)}] \)
\(g(x) = 1 + 10(n - 1) + \sum_{i=2}^{n} [x_i^2 - 10 \cos(4\pi x_i)] \) |
| ZDT6 Non-convex Non-uniformly distributed | 10; [0 , 1] | \(f_1(x) = 1 - \exp(-4x_1) \sin^6(6\pi x_1) \)
\(f_2(x) = g(x)[1 - (f_1(x)/g(x))^2] \)
\(g(x) = 1 + 9(\sum_{i=2}^{n} x_i)/(n - 1)^{0.25} \) |

the effectiveness of their proposed algorithms. [9, 11, 28, 29, 32, 111–114]. The definitions of the selected problems are outlined in the following and in Table 3.1.

- **FON** is a non-convex an non-linear problem. It is difficult for algorithm to maintain a stable evolving population for FON [9]. This problem challenge the algorithms to find and maintain a uniform Pareto front [115, 116]. In addition, the performance of algorithms can be easily compared via visual observations on the Pareto front for this problem.

- **KUR** used two complicated objective with nonconvex and disconnected Pareto front. There are a total of three distinct disconnected regions on the Pareto frontier. Furthermore, the decision variables are also disconnected in the decision space and difficult to discover. It challenges the algorithm’s ability to cope with discontinuities and non-convexities. [117]

- **ZDT1** is a problem with a large number of decision variables (30) to be optimized.
It has a convex Pareto front. This problem challenges the algorithm’s ability to converge and maintain a diverse solution on a convex Pareto frontier.

- ZDT3 is a problem with 30 variables to be optimized. Its Pareto front has several noncontiguous convex parts that represent the discreteness feature. These features challenge the algorithm to find the optimal. However, there is no discontinuity in the parameter space.

- ZDT4 is a problem with 10 variables where the first variable is in \([0, 1]\) and the rest of them are in \([-5, 5]\). This problem contains \(21^9\) local Pareto optimal that challenge the ability of the algorithms to deal with multimodality [113,114].

- ZDT6 is a problem with 10 variables and a nonconvex formed Pareto front. This presents two difficulties. First, the Pareto optimal solutions are non-uniformly distributed along the global Pareto front and, second, the density of solutions is lowest near the Pareto front and highest away from the front. [113,114]

The characteristics of these problems are highlighted in Table 3.1. These test functions are modified in the form of 3.1 in order to include the impact of noise.

3.5.3 Results

True Pareto front is the best recent estimation of each problem therefore we plot our result with true Pareto front to represent how well algorithms work.

For a convenient evaluation of the results, desirable value of performance metrics are restated here. For GD and S metrics 0 and for MS and HVR metrics 1 is desirable value. Closeness of the performance metrics value to the desirable value indicates the quality of estimated solutions.

- FON: figure 3.2 shows the true Pareto front and estimated Pareto front of noisy FON problem by MOEA/D. Table 3.2 includes the performance metric values of MOEA/D in presence of different levels of noise. It is desirable that performance metrics GD and S converge to 0 and MS and HVR converge to 1 as it mentioned is section 3.4. As it can be seen from table 3.2 the performance of MOEA/D
algorithm deteriorate sharply when noise intensity increases. Because, when noise level is 20% the performance metrics values are far from being acceptable.

- KUR: figure 3.3 shows the obtained result from benchmark problem KUR. Table 3.3 represent the performance metric values of this benchmark problem in presence of different noise levels. Similar to FON for this problem (KUR), as it can be seen from the values of the table, MOEA/D cannot perform well when noise level increases. For example, GD values rocketed up from 0.0326 to 0.05098 when noise level varies from 1% to 20% respectively. The gap between estimated Pareto front and true Pareto front increases dramatically and the performance metrics values aggravate when noise level increases. However, by the obtained result from KUR problem it seems that noise has its most gentle impact on performance of MOEA/D for this problem.

- ZDT1: figure 3.4 shows the estimated Pareto front of ZDT1 found by MOEA/D in the presence of different levels of noise in comparison with the true Pareto front. And evolutionary algorithm, by its very nature, can handle low level noise. This fact is illustrated in Parts (a) and (b) of Figure 3.4. However, the algorithm fails to approximate a good solution in the presence of medium and high levels of noise. The solutions are not evenly distributed along the Pareto front and in some places we can see that dominated solutions are still present in the Pareto front. Performance metrics values in table 3.4 also shows the level of vulnerability of MOEA/D in noisy environment.

- ZDT3: figure 3.5 shows the true and estimated Pareto fronts for benchmark problem ZDT3. This problem has a discontinuous Pareto front. As can be clearly seen, even two percent of noise (low level noise) degrades the performance of MOEA/D. Table 3.5 shows the values of performance metrics by MOEA/D for this benchmark problem. The performance metrics values for MOEA/D on this benchmark problem is getting far from desirable values when noise levels increases. For example when 1% noise is percent GD return 0.0369 that is small and close to sensible
value 0 but when noise level increases to 20% the GD return 0.6540 which is significantly large value for this performance metric that show how bad the situation is.

- ZDT4: figure 3.6 shows the true and estimated Pareto fronts for benchmark problem ZDT4. This is a benchmark problem with a multimodal feature as discussed in Section 3.5.2. From these diagrams (a) to (e) it would appear that the performance of MOEA/D is quite satisfactory in the presence of only one percent of noise. However, the algorithm is challenged even by two percent noise which is still considered as low level noise. Table 3.6 includes the performance metrics values of MOEA/D for noisy ZDT4. From the values of this table it can be seen that the performance of MOEA/D deteriorated when noise intensities. For instance, HVR’s value dropped by 50% when noise level increased to 20%.

- ZDT6: figure 3.7 shows the behaviour of MOEA/D in objective space for noisy benchmark problem ZDT6. The obtained result, with only one percent of noise, is near optimal although the diversity and quality of solutions reduces as the noise level increases. Table 3.7 includes the performance metrics values of MOEA/D for noisy ZDT6. It can be seen MOEA/D’s performance degenerates with respect to performance metrics which applied so far. For example S metrics values grow 10 times larger when noise level reach 20% from 1%.
Table 3.3: Performance metric values of estimated Pareto front by MOEA/D for noisy KUR

<table>
<thead>
<tr>
<th>Noise Level</th>
<th>GD</th>
<th>MS</th>
<th>S</th>
<th>HVR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1% Noise</td>
<td>0.0326</td>
<td>0.9963</td>
<td>0.0828</td>
<td>1.0067</td>
</tr>
<tr>
<td>2% Noise</td>
<td>0.0506</td>
<td>0.9957</td>
<td>0.0825</td>
<td>1.0149</td>
</tr>
<tr>
<td>5% Noise</td>
<td>0.1146</td>
<td>0.9944</td>
<td>0.0791</td>
<td>1.0484</td>
</tr>
<tr>
<td>10% Noise</td>
<td>0.2384</td>
<td>0.9898</td>
<td>0.1059</td>
<td>1.1072</td>
</tr>
<tr>
<td>20% Noise</td>
<td>0.5098</td>
<td>0.9838</td>
<td>0.1630</td>
<td>1.2316</td>
</tr>
</tbody>
</table>

Table 3.4: Performance metric values of estimated Pareto front by MOEA/D for noisy ZDT1

<table>
<thead>
<tr>
<th>Noise Level</th>
<th>GD</th>
<th>MS</th>
<th>S</th>
<th>HVR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1% Noise</td>
<td>0.0396</td>
<td>0.9963</td>
<td>0.0352</td>
<td>1.0317</td>
</tr>
<tr>
<td>2% Noise</td>
<td>0.0596</td>
<td>0.9948</td>
<td>0.0424</td>
<td>1.0563</td>
</tr>
<tr>
<td>5% Noise</td>
<td>0.2004</td>
<td>0.9052</td>
<td>0.0501</td>
<td>0.7948</td>
</tr>
<tr>
<td>10% Noise</td>
<td>0.6336</td>
<td>0.7341</td>
<td>0.0655</td>
<td>0.2626</td>
</tr>
<tr>
<td>20% Noise</td>
<td>1.1114</td>
<td>0.7081</td>
<td>0.0957</td>
<td>0.0799</td>
</tr>
</tbody>
</table>

Table 3.5: Performance metric values of estimated Pareto front by MOEA/D for noisy ZDT3

<table>
<thead>
<tr>
<th>Noise Level</th>
<th>GD</th>
<th>MS</th>
<th>S</th>
<th>HVR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1% Noise</td>
<td>0.0396</td>
<td>0.9963</td>
<td>0.0352</td>
<td>1.0317</td>
</tr>
<tr>
<td>2% Noise</td>
<td>0.0779</td>
<td>0.9711</td>
<td>0.0552</td>
<td>1.0547</td>
</tr>
<tr>
<td>5% Noise</td>
<td>0.1942</td>
<td>0.9240</td>
<td>0.0711</td>
<td>0.9390</td>
</tr>
<tr>
<td>10% Noise</td>
<td>0.5900</td>
<td>0.7745</td>
<td>0.0738</td>
<td>0.4446</td>
</tr>
<tr>
<td>20% Noise</td>
<td>0.9540</td>
<td>0.7075</td>
<td>0.1114</td>
<td>0.2764</td>
</tr>
</tbody>
</table>

Table 3.6: Performance metric values of estimated Pareto front by MOEA/D for noisy ZDT4

<table>
<thead>
<tr>
<th>Noise Level</th>
<th>GD</th>
<th>MS</th>
<th>S</th>
<th>HVR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1% Noise</td>
<td>0.0396</td>
<td>0.9963</td>
<td>0.0352</td>
<td>1.0317</td>
</tr>
<tr>
<td>2% Noise</td>
<td>1.6368</td>
<td>0.9828</td>
<td>1.5954</td>
<td>1.0053</td>
</tr>
<tr>
<td>5% Noise</td>
<td>1.7076</td>
<td>0.8800</td>
<td>1.5809</td>
<td>0.9344</td>
</tr>
<tr>
<td>10% Noise</td>
<td>2.9027</td>
<td>0.7153</td>
<td>2.5614</td>
<td>0.6479</td>
</tr>
<tr>
<td>20% Noise</td>
<td>3.5134</td>
<td>0.6301</td>
<td>2.4304</td>
<td>0.5033</td>
</tr>
</tbody>
</table>

Table 3.7: Performance metric values of estimated Pareto front by MOEA/D for noisy ZDT6

<table>
<thead>
<tr>
<th>Noise Level</th>
<th>GD</th>
<th>MS</th>
<th>S</th>
<th>HVR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1% Noise</td>
<td>0.0396</td>
<td>0.9963</td>
<td>0.0352</td>
<td>1.0317</td>
</tr>
<tr>
<td>2% Noise</td>
<td>0.1675</td>
<td>0.9998</td>
<td>0.1399</td>
<td>1.1227</td>
</tr>
<tr>
<td>5% Noise</td>
<td>0.3286</td>
<td>0.9992</td>
<td>0.2014</td>
<td>1.3053</td>
</tr>
<tr>
<td>10% Noise</td>
<td>0.5851</td>
<td>0.9988</td>
<td>0.2190</td>
<td>1.6211</td>
</tr>
<tr>
<td>20% Noise</td>
<td>1.7030</td>
<td>1.2284</td>
<td>0.3245</td>
<td>1.9502</td>
</tr>
</tbody>
</table>
Figure 3.2: The evolved Pareto front of FON under the influence of noise levels (a)1%, (b)2%, (c)5%, (d)10% and (e)20% by MOEA/D.
Figure 3.3: The evolved Pareto front of KUR under the influence of noise levels (a)1%, (b)2%, (c)5%, (d)10% and (e)20% by MOEA/D.
Figure 3.4: The evolved Pareto front of ZDT1 under the influence of noise levels (a)1%, (b)2%, (c)5%, (d)10% and (e)20% by MOEA/D.
Figure 3.5: The evolved Pareto front of ZDT3 under the influence of noise levels (a)1%, (b)2%, (c)5%, (d)10% and (e)20% by MOEA/D.
Figure 3.6: The evolved Pareto front of ZDT4 under the influence of noise levels (a) 1%, (b) 2%, (c) 5%, (d) 10% and (e) 20% by MOEA/D.
Figure 3.7: The evolved Pareto front of ZDT6 under the influence of noise levels (a) 1%, (b) 2%, (c) 5%, (d) 10% and (e) 20% by MOEA/D.
Figure 3.8: MOEA/D’s trace of performance metrics for (a) FON, (b) KUR, (c) ZDT1, (d) ZDT3, (e) ZDT4, (f) ZDT6.
3.5.4 Discussion

From the results of Section 3.5.3 it is clear that the impact of noise on MOEA/D varies for each different benchmark problem, with their different features and difficulties.

As noise levels intensify, we can observe from Figures 3.2 to 3.7 that the range of solutions expands and the gap between true Pareto front and the estimated Pareto front becomes larger. In addition, the diversity of solutions drops badly as illustrated by the sharp reduction in the number of solutions found.

Similarly from table 3.2 to 3.7 it can be clearly seen that value of different performance metrics get far from desirable values when the noise intensities increase. As it mentioned in section 3.4 it is desirable if GD and S metrics converge to 0 and MS and HVR converge to 1. By the result of these tables the performance of MOEA/D is deteriorating for all of the tested benchmark problems when noise level increased.

The impact of noise is observed to be severe on problems such as ZTD3, with its discontinued Pareto front, and ZDT4, with multimodality, although MOEA/D does evolve better solutions for some problems, such as ZTD1, in the presence of low level noise and KUR benchmark problem.

Figure 3.8 plots the performance metrics for all the benchmark problems in the presence of different noise levels. Deterioration in the performance of MOEA/D is significant: for instance, the generational gap (GD) rocketed up as noise intensified. This trend is detectable for other performance metrics as well. In other words, when noise intensifies the performance of MOEA/D forcefully degenerates.

It is not clear why S metric in some cases such as part (f) in figure 3.8 behave as random or why HVR metric in part (c) return zero when noise level reach to 20%. In fact applying multiple performance metrics will guarantee that we will not lose any useful information. But we think added noise influence the diversity of solution in some problem harsher than others. This can lead to the gap between solutions in approximated Pareto front. As S metric calculate this gap therefore it can be random if algorithm will not be able to keep the best solution during the search for optimal.
3.6 Conclusions

This chapter opened with a description of noisy multi-objective optimization problems, outlined the challenge to evolutionary algorithm (EA) in handling such noisy problems and then analysed the decomposition based multi-objective optimization evolutionary algorithm (MOEA/D) in the presence of noise with different intensities.

Major contribution:

1- This is the first piece of research that studies the effect of noise on the performance of MOEA/D.

2- We have proved that the performance of MOEA/D deteriorates as noise level intensifies. [See Section 3.5.3 and section 3.5.4]

Minor contribution: The features of a problem must be taken into account. Problems with features such as multi-modality or discontinued Pareto fronts are faced with greater adversity. [See Section 3.5.4]

Significance: This is very important for the development of future algorithms: we now know that the standard MOEA/D must be modified to handle noise.
In the previous chapter we showed in detail the impact of noise on the performance of MOEA/D. The results of our experiments support the fact that MOEA/D deteriorates rapidly when noise intensities increase.

Ordinal optimization theory ensures that the order of solutions is likely to be preserved, even when using a crude model evaluation, in the presence of noise [3]. Thus, in order to ensure the selection of a set of good enough solutions, but with minimum computational cost, constructing a crude model is necessary.

In this chapter we will combine the MOEA/D framework with ordinal optimization technique to handle the noisy multi-objective optimization problem.
4.1 Simulation Based Optimization

For computationally intensive objective functions the performance of system \(F(x, w) \) can be measured via simulation [118], where \(x \) is a vector of system parameters and \(w \) represents either randomness or noise in the system. For a simulation-based optimization problem, an estimation of expected system performance can be obtained by applying a Monte Carlo procedure as follows,

\[
J(x) = E[F(x, w)] = \lim_{n \to \infty} \left(\frac{1}{n} \sum_{i=1}^{n} F(x, w_i) \right)
\]

Limits can be approximated by

\[
J(x) \equiv \left(\frac{1}{n} \right) \sum_{i=1}^{n} F(x, w_i)
\] \hspace{1cm} (4.1)

When \(n \) is large, this approximation is more accurate.

Thus, the algorithm optimizes as per Equation 4.1 instead of directly on \(F(x, w) \), as the former is either noisy or computationally expensive. This problem, in our case a multi-objective optimization, can be modelled as follows,

\[
\min_{x \in \Omega} J(x)
\] \hspace{1cm} (4.2)

where \(\Omega \) is the search space.

The simulation is conducted as a proxy for the actual system in an optimization process. Real world problems are too complex to be solved analytically, hence studying them via computer simulation [118]. Recent computer technology advances have moved simulation methods from a last resort to a primary technique for solving many real world problems.

Ordinal optimization is one technique among many that have evolved to cope with this sort of simulation based evaluation problem [72]. Most of the early research focused on single objective optimization problems [3], but in the last decade ordinal optimization method has been extended to multi-objective optimization problems and given the title
Algorithm 4.1 MOEA/D with OO

Input:

- MOP (4.2);
- A stopping criterion;
- N: the number of subproblems considered in MOEA/D+OO.
- A uniform spread of the weight vectors: $\lambda_1, \cdots, \lambda_N$;
- T: the number of weight vectors in the neighborhood of each weight vector.

Output:

- EP : Good enough solutions found by algorithm;

Step 1) Initialization:
 Step 1.1) Set EP = \emptyset .
 Step 1.2) Compute the Euclidean distances between any two weight vectors and then work out T the closest weight vectors to each weight vector. For each $i = 1, \ldots, N$, set $B(i) = \{i_1, \ldots, i_T\}$, where $\lambda_{i_1}, \ldots, \lambda_{i_T}$ are the T closest weight vectors to λ_i.
 Step 1.3) Generate initial population x^1, \ldots, x^N at random.
 Step 1.4) Evaluate the population by crude model.
 Step 1.5) Initialize reference point $z^* = (z_{1}^{*}, \ldots, z_{m}^{*})$.

Step 2) Update:
 For $i = 1, \ldots, N$, do
 Step 2.1) Reproduction: Randomly select three solutions from $B(i)$ to generate a new solution y by using DE and polynomial mutation.
 Step 2.2) Update of z: For each $j = 1, \ldots, m$, if $z_j < J_j(y)$, then set $z_j = J_j(y)$.
 Step 2.3) Update of Neighbouring Solutions: For each index $j \in B(i)$, if $g^c(y|\lambda_j, z) \leq g^c(x^j|\lambda_j, z)$, then set $x_j = y$ and $J(x^j) = J(y)$.

Step 3) Stopping Criteria:
 If stopping criteria is satisfied, then stop and go to 4.
 Otherwise, go to Step 2.

Step 4) Good Enough Set:
 Step 4.1) Select the first layer of solutions.
 Step 4.2) Evaluate the selected set with exact model and copy them in EP.
 Step 4.3) Return EP.
4.2 Combining MOEA/D with Ordinal Optimization

Ordinal optimization theory ensures that the order of solutions is likely preserved even through evaluation with a crude model in the presence of noise [3]. Thus for selecting a set of good enough solutions with minimum computational cost we need to construct a crude model to approximate Eq. 4.1. For this purpose, a rough model is constructed, based on a stochastic simulation with a small amount of test samples.

For a noisy multi-objective problem, similar to the problem in 4.2, we use the ordinal optimization technique along with the MOEA/D algorithm to handle noise. We call the new algorithm: Combined MOEA/D algorithm with OO technique (MOEA/D+OO).

In order to solve equation (4.2), MOEA/D+OO involves three steps that are summarized as follows,

1. First, construct a crude model to approximate the objective value for $E[f(x)]$ of a given x.

2. Second, apply MOEA/D assisted by the crude model to solve (4.2) for a good enough subset of solutions S.

3. Third, use the exact model to evaluate the objective value $E[f(x)]$ for each x in S.

4.2.1 Crude model

Stochastic simulation is lengthy and computationally expensive. However, whilst not as accurate as a normal model, using a crude model based on stochastic simulation to approximate $E[f(x)]$ does reduce computational cost and complexity. We settled on 1000 as an appropriate number of test samples for this step.

4.2.2 MOEA/D with crude model

Using a crude model to evaluate the objective values, MOEA/D can efficiently search for N good enough solutions for Problem 4.2. As the algorithm completes its last iteration, all final solutions are copied to S as good enough solutions.
4.2.3 Exact model

Finally the selected solutions S which are obtained by MOEA/D with crude model are ready to be evaluated with a more refined model that we call Exact Model. An exact model can be constructed by a larger number of test samples. A sufficiently large sampling size is 10^6 [119], but in this study we apply a model with a sampling size of 10^4.

4.3 Experiment

The purpose of this experiment is to assess the performance of new algorithm (MOEA/D+OO) in the presence of different levels of noise. We compare the performance of MOEA/D+OO and the original MOEA/D to see whether the modification has made the algorithm better at handling noise.

4.3.1 Design of Experiment

To begin with, for computational ease, a crude model is constructed based on stochastic simulation with a basic number of test samples, let us say 1000, whilst the number of simulations for the exact model is set at 10^4.

The results depicted in Tables 4.1 to 4.6 were obtained after 50 runs. They show that the proposed algorithm does outperform the generic MOEA/D for all types of problem it was tested on and with different levels of noise, such as $\{1\%, 2\%, 5\%, 10\%, 20\%\}$. The tested problems are presented in Table 3.1 and Section 3.5.2.

For testing MOEA/D+OO we use the same parameter setting (neighbourhood and population size, maximum iteration and reproduction parameters) as it mentioned in section 3.5.1 for MOEA/D. We run our experiments in Matlab.

Similar to chapter 3 computational cost and time for noisy optimization problem are not reported as finding a proper and trustworthy method for handling noise is more concerned than other issues such as computational cost and time. Authors in [9] also did not cover these information.
Table 4.1: Performance metrics values of estimated Pareto front by MOEA/D+OO for noisy FON

<table>
<thead>
<tr>
<th>Noise Level</th>
<th>GD</th>
<th>MS</th>
<th>S</th>
<th>HVR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1% Noise</td>
<td>0.0041 (0.0159)</td>
<td>0.9979 (0.0041)</td>
<td>0.0037 (0.0035)</td>
<td>0.9848 (0.0897)</td>
</tr>
<tr>
<td>2% Noise</td>
<td>0.0045 (0.0475)</td>
<td>0.9972 (0.0300)</td>
<td>0.0043 (0.0072)</td>
<td>0.9754 (0.1772)</td>
</tr>
<tr>
<td>5% Noise</td>
<td>0.0055 (0.1679)</td>
<td>0.9915 (0.3470)</td>
<td>0.0063 (0.0184)</td>
<td>0.9661 (0.0324)</td>
</tr>
<tr>
<td>10% Noise</td>
<td>0.0071 (0.2358)</td>
<td>0.9881 (0.3944)</td>
<td>0.0087 (0.2720)</td>
<td>0.9531 (0.1274)</td>
</tr>
<tr>
<td>20% Noise</td>
<td>0.0102 (0.2514)</td>
<td>0.9748 (0.2233)</td>
<td>0.0119 (0.0654)</td>
<td>0.9359 (0.5514)</td>
</tr>
</tbody>
</table>

4.3.2 Results

Results are obtained from fifty independent runs. The average means of the collected data are represented in the following tables and graphs.

Tables 4.1 to 4.6 trace the values of MOEA/D+OO’s different performance metrics on the benchmark problems outlined in Section 3.5.2. These tables contain four columns for the different performance metrics and five rows for the various noise levels. As mentioned in Section 3.4, a lower value of GD and S compels a better approximation of the Pareto front. In addition, for MS and HVR a value closer to one is sensible.

The values in parentheses show the difference between calculated values of performance metrics for MOEA/D+OO and its basic version MOEA/D. As can be clearly seen, these values are increasing dramatically when noise levels intensify (shown top to bottom in each column). This indicates that MOEA/D+OO performs far better than MOEA/D in a noisy environment. Proof of this can be taken from how close to desirable are the performance metric values (shown in the tables) for MOEA/D+OO: GD and S are close to zero and MS and HVR are close to one.

Bold values in tables 4.1 to 4.6 mean MOEA/D is better than MOEA/D+OO in these specific cases. There are a few instances, mostly in presence of low levels noise, which performance of MOEA/D is better that MOEA/D+OO.

Figure 4.1 shows the values that returned by performance metrics (a) GD, (b) MS, (c) S and (d) HVR for benchmark problem FON by MOEA/D+OO under the influence of different noise levels. Desirable values of these four performance metrics is mentioned in section 3.4. As can be seen the estimated value for GD and S is very close to 0 and value for MS and HVR is converging to 1 in presence of different noises for benchmark
Chapter 4. MOEA/D With Ordinal Optimization for Handling Noisy Problems

Table 4.2: Performance metrics values of estimated Pareto front by MOEA/D+OO for noisy KUR

<table>
<thead>
<tr>
<th>KUR</th>
<th>GD</th>
<th>MS</th>
<th>S</th>
<th>HVR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1% Noise</td>
<td>0.0256 (0.0070)</td>
<td>0.9967 (0.0004)</td>
<td>0.0921 (0.0093)</td>
<td>1.0002 (0.0065)</td>
</tr>
<tr>
<td>2% Noise</td>
<td>0.0252 (0.0254)</td>
<td>0.9967 (0.0010)</td>
<td>0.0949 (0.8665)</td>
<td>0.9999 (0.0150)</td>
</tr>
<tr>
<td>5% Noise</td>
<td>0.0264 (0.6882)</td>
<td>0.9963 (0.0019)</td>
<td>0.0940 (0.0149)</td>
<td>0.9988 (0.0496)</td>
</tr>
<tr>
<td>10% Noise</td>
<td>0.0312 (0.2072)</td>
<td>0.9955 (0.0057)</td>
<td>0.0954 (0.0105)</td>
<td>0.9975 (0.1097)</td>
</tr>
<tr>
<td>20% Noise</td>
<td>0.0404 (0.4694)</td>
<td>0.9945 (0.0107)</td>
<td>0.0959 (0.0671)</td>
<td>0.9959 (0.2357)</td>
</tr>
</tbody>
</table>

Table 4.3: Performance metrics values of estimated Pareto front by MOEA/D+OO for noisy ZDT1

<table>
<thead>
<tr>
<th>ZDT1</th>
<th>GD</th>
<th>MS</th>
<th>S</th>
<th>HVR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1% Noise</td>
<td>0.03112 (0.01202)</td>
<td>0.99757 (0.00229)</td>
<td>0.03056 (0.02099)</td>
<td>0.99662 (0.03099)</td>
</tr>
<tr>
<td>2% Noise</td>
<td>0.03112 (0.02845)</td>
<td>0.99757 (0.00274)</td>
<td>0.03056 (0.01184)</td>
<td>0.99662 (0.05968)</td>
</tr>
<tr>
<td>5% Noise</td>
<td>0.03416 (0.16623)</td>
<td>0.99533 (0.09016)</td>
<td>0.02870 (0.02138)</td>
<td>0.98856 (0.19374)</td>
</tr>
<tr>
<td>10% Noise</td>
<td>0.07327 (0.56043)</td>
<td>0.99129 (0.25719)</td>
<td>0.04335 (0.02214)</td>
<td>0.97448 (0.71185)</td>
</tr>
<tr>
<td>20% Noise</td>
<td>0.14747 (0.95346)</td>
<td>0.98418 (0.27620)</td>
<td>0.06011 (0.03595)</td>
<td>0.93860 (0.85859)</td>
</tr>
</tbody>
</table>

Table 4.4: Performance metrics values of estimated Pareto front by MOEA/D+OO for noisy ZDT3

<table>
<thead>
<tr>
<th>ZDT3</th>
<th>GD</th>
<th>MS</th>
<th>S</th>
<th>HVR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1% Noise</td>
<td>0.05602 (0.00227)</td>
<td>0.98389 (0.01614)</td>
<td>0.06642 (0.01157)</td>
<td>0.98661 (0.02569)</td>
</tr>
<tr>
<td>2% Noise</td>
<td>0.05602 (0.02185)</td>
<td>0.98389 (0.01277)</td>
<td>0.06642 (0.01127)</td>
<td>0.98661 (0.06805)</td>
</tr>
<tr>
<td>5% Noise</td>
<td>0.05306 (0.14098)</td>
<td>0.98363 (0.05900)</td>
<td>0.06113 (0.01060)</td>
<td>0.97969 (0.04012)</td>
</tr>
<tr>
<td>10% Noise</td>
<td>0.09590 (0.9413)</td>
<td>0.97811 (0.20364)</td>
<td>0.07335 (0.00041)</td>
<td>0.96164 (0.57193)</td>
</tr>
<tr>
<td>20% Noise</td>
<td>0.16747 (0.75728)</td>
<td>0.96492 (0.25743)</td>
<td>0.08411 (0.02729)</td>
<td>0.92042 (0.64480)</td>
</tr>
</tbody>
</table>

Table 4.5: Performance metrics values of estimated Pareto front by MOEA/D+OO for noisy ZDT4

<table>
<thead>
<tr>
<th>ZDT4</th>
<th>GD</th>
<th>MS</th>
<th>S</th>
<th>HVR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1% Noise</td>
<td>1.40825 (0.6046)</td>
<td>0.99570 (0.00384)</td>
<td>1.40726 (0.58915)</td>
<td>0.98913 (0.00535)</td>
</tr>
<tr>
<td>2% Noise</td>
<td>1.40825 (0.2285)</td>
<td>0.99570 (0.01287)</td>
<td>1.40726 (0.18809)</td>
<td>0.98913 (0.01621)</td>
</tr>
<tr>
<td>5% Noise</td>
<td>0.97472 (0.73288)</td>
<td>0.98906 (0.10908)</td>
<td>0.95770 (0.62321)</td>
<td>0.97111 (0.03671)</td>
</tr>
<tr>
<td>10% Noise</td>
<td>0.38387 (2.51878)</td>
<td>0.98634 (0.27099)</td>
<td>0.35458 (2.20865)</td>
<td>0.95057 (0.36247)</td>
</tr>
<tr>
<td>20% Noise</td>
<td>0.52865 (2.98473)</td>
<td>0.97886 (0.34076)</td>
<td>0.46897 (1.96143)</td>
<td>0.90115 (0.39786)</td>
</tr>
</tbody>
</table>

Table 4.6: Performance metrics values of estimated Pareto front by MOEA/D+OO for noisy ZDT6

<table>
<thead>
<tr>
<th>ZDT6</th>
<th>GD</th>
<th>MS</th>
<th>S</th>
<th>HVR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1% Noise</td>
<td>0.10887 (0.07971)</td>
<td>0.99955 (0.00031)</td>
<td>0.10947 (0.08930)</td>
<td>0.99527 (0.05907)</td>
</tr>
<tr>
<td>2% Noise</td>
<td>0.10887 (0.05065)</td>
<td>0.99955 (0.00021)</td>
<td>0.10947 (0.03044)</td>
<td>0.99527 (0.12748)</td>
</tr>
<tr>
<td>5% Noise</td>
<td>0.07787 (0.25072)</td>
<td>0.99982 (0.00042)</td>
<td>0.07951 (0.12190)</td>
<td>0.99218 (0.31309)</td>
</tr>
<tr>
<td>10% Noise</td>
<td>0.02911 (0.56601)</td>
<td>0.99934 (0.00350)</td>
<td>0.02828 (0.19073)</td>
<td>0.99637 (0.62472)</td>
</tr>
<tr>
<td>20% Noise</td>
<td>0.10579 (1.59723)</td>
<td>0.98465 (0.24375)</td>
<td>0.05335 (0.27111)</td>
<td>1.07163 (0.87855)</td>
</tr>
</tbody>
</table>
Figure 4.1: Performance Metrics of MOEA/D+OO in presence of different noise levels for noisy FON problem.

Figure 4.2 represent the performance metrics (a) GD, (b) MS, (c) S and (d) HVR for benchmark problem KUR attained by MOEA/D+OO under the influence of different levels of noise. As can been seen, performance metrics return sensible values for all four metrics in presence of low level noises to high level.

Figure 4.3 shows the performance metrics (a) GD, (b) MS, (c) S and (d) HVR for ZDT1 attained by MOEA/D+OO under the influence of different noise levels over 150 generations. According to this graph, MOEA/D+OO estimated the Pareto front extremely well for low, medium and high level noises - all except 20%. The spacing metric (S) and generational distance (GD) show a bit of violation under the influence of 20% noise, which can be caused by bad distribution of solutions and a meaningful
gap between the estimated Pareto front and true Pareto front.

Figure 4.4 represents the value of MOEA/D+OO’s performance metrics for the ZDT3 problem, influenced by different levels of noise over 150 generations. According to this diagram, the algorithm had difficulty in maintaining a diverse and evenly spread solution set. This challenge to the algorithm with this problem was its disconnected Pareto front.

Figure 4.5 shows how MOEA/D+OO deals with a multimodal noisy ZDT4 problem. According to this graph, the spacing performance metric (S) gets disturbed when noise increases to twenty percent. This in turn impacts the diversity of the solution, but the other performance metrics do indicate that the modified algorithm (MOEA/D+OO) achieves a very close approximation of the true Pareto front for noisy ZDT4. Perfor-
mance metric S for unclear reason return unseasonable values, it might be caused by multi-modality feature of this problem.

Figure 4.6 illustrates the performance metrics of MOEA/D+OO for noisy ZDT6. For this problem, as with ZDT4, the diversity of solution is impacted by high levels of noise with regard to the spacing metrics. Other metrics, however, such as GD serve to underline the rightness of estimated Pareto front. Similar to ZDT4 problem, performance metric S is also unseasonable for unknown reason.

It is not clear why S metric in only few cases (ZDT4 and ZDT6) seems random. But we think added noise influence the diversity of solution in some problem harsher than others. This can lead to the gap between solutions in approximated Pareto front. As S metric calculate this gap therefore it can be random if algorithm will not be able to
keep the best solution during the search for optimal.

True Pareto front is the best recent estimation of each problem therefore we plot our result with true Pareto front to represent how well algorithms work. Figure 4.7 shows both the estimated and true Pareto fronts for noisy FON by MOEA/D+OO. The algorithm shows its ability to handle noise but, in presence of twenty percent noise, there are some missing solutions that would indicate the impact of high noise on the diversity of solutions.

Figure 4.8 draws both the estimated and true Pareto fronts for noisy KUR by MOEA/D+OO. The algorithm shows its ability to handle noise. As can be seen from these graph, algorithm maintain a good diversity and precision to estimated the true Pareto front in all scenarios.
Figure 4.5: Performance Metrics of MOEA/D+OO in presence of different noise levels for noisy ZDT4 problem.

Figure 4.9 draws both the estimated and true Pareto fronts for noisy ZDT1 by MOEA/D+OO. The algorithm shows its ability to handle noise but, in presence of twenty percent noise, there are some missing solutions that would indicate the impact of high noise on the diversity of solutions.

Figure 4.10 depicts the estimated and true Pareto fronts of noisy problem ZDT3 by MOEA/D+OO. This problem has a disconnected Pareto front on which the new algorithm achieves better performance than its basic version that failed to cover some parts of the Pareto front - see Section 3.5.3. As can be seen, even in the presence of 20% noise, the new algorithm finds solutions in all the disconnected parts of the Pareto front.

Figure 4.11 shows how well MOEA/D+OO approximates the Pareto front in noisy
ZDT4 in comparison with the true Pareto front. As mentioned in Section 3.5.2, the ZDT4 problem is a multimodal problem. The algorithm estimates Pareto front quite satisfactorily, but some solutions are still missing which in turn impacts the diversity of solutions at high levels of noise. In the presence of noise finding near optimal solutions is a big challenge for the MOEA algorithm. In contrast, our modified algorithm is quite adept at tackling this challenge.

Figure 4.12 represents the approximated Pareto front of noisy ZDT6 by MOEA/D+OO. The performance of the algorithm is almost that of the true Pareto front, apart from when the noise gets to twenty percent. However its performance is still satisfactory, even at that level.
Figure 4.7: Pareto Front of noisy FON under the influence of noise level at (a)1%, (b)2%, (c)5%, (d)10%, (e)20% by MOEA/D+OO.
Figure 4.8: Pareto Front of noisy KUR under the influence of noise level at (a)1%, (b)2%, (c)5%, (d)10%, (e)20% by MOEA/D+OO.
Figure 4.9: Pareto Front of noisy ZDT1 under the influence of noise level at (a) 1%, (b) 2%, (c) 5%, (d) 10%, (e) 20% by MOEA/D+OO.
Figure 4.10: Pareto Front of noisy ZDT3 under the influence of noise level at (a)1%, (b)2%, (c)5%, (d)10%, (e)20% by MOEA/D+OO.
Figure 4.11: Pareto Front of noisy ZDT4 under the influence of noise level at (a) 1%, (b) 2%, (c) 5%, (d) 10%, (e) 20% by MOEA/D+OO.
Figure 4.12: Pareto Front of noisy ZDT6 under the influence of noise level at (a) 1%, (b) 2%, (c) 5%, (d) 10%, (e) 20% by MOEA/D+OO.
Figure 4.13: Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for FON with 1% noise.

Figure 4.14: Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for FON with 2% noise.

Figure 4.15: Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for FON with 5% noise.

Figure 4.16: Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for FON with 10% noise.
Figure 4.17: Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for FON with 20% noise

Figure 4.18: Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for KUR with 1% noise

Figure 4.19: Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for KUR with 2% noise

Figure 4.20: Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for KUR with 5% noise
Figure 4.21: Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for KUR with 10% noise

Figure 4.22: Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for KUR with 20% noise

Figure 4.23: Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for ZDT1 with 1% noise

Figure 4.24: Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for ZDT1 with 2% noise
Figure 4.25: Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for ZDT1 with 5% noise.

Figure 4.26: Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for ZDT1 with 10% noise.

Figure 4.27: Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for ZDT1 with 20% noise.

Figure 4.28: Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for ZDT3 with 1% noise.
Figure 4.29: Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for ZDT3 with 2% noise

Figure 4.30: Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for ZDT3 with 5% noise

Figure 4.31: Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for ZDT3 with 10% noise

Figure 4.32: Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for ZDT3 with 20% noise
Figure 4.33: Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for ZDT4 with 1% noise

Figure 4.34: Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for ZDT4 with 2% noise

Figure 4.35: Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for ZDT4 with 5% noise

Figure 4.36: Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for ZDT4 with 10% noise
Figure 4.37: Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for ZDT4 with 20% noise

Figure 4.38: Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for ZDT6 with 1% noise

Figure 4.39: Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for ZDT6 with 2% noise

Figure 4.40: Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for ZDT6 with 5% noise
Chapter 4. MOEA/D With Ordinal Optimization for Handling Noisy Problems

4.3.3 Discussion

It can be seen from the results of our experiment that MOEA/D+OO is capable of evolving a near optimal, diverse and uniformly distributed Pareto front for the different benchmark problems discussed in Section 3.5.2. By comparing the results of MOEA/D in Section 3.5.3 and MOEA/D+OO in Section 4.3.2 it can be clearly observed that MOEA/D+OO significantly outperforms MOEA/D in noisy environments.

The evidence of MOEA/D+OO’s superiority over its basic version in relation to the different performance metrics can be established as follows:

4.3.3.1 GD

Generational distance measures the gap between the evaluated Pareto front and true Pareto front, as outlined in Section 3.4. Looking at the GD values for MOEA/D+OO in Tables 4.1 to 4.6, they are very small and almost zero in most cases, indicating that the new algorithm is able to approximate solutions very close to the true Pareto front.
For the noisy, multimodal feature ZDT4 problem, the algorithm was faced with a bigger challenge, even in low levels of noises, but in general performs quite satisfactorily (See Figure 4.11).

By considering the values in parentheses, we can see how the performance of MOEA/D deteriorates when noise intensifies because the values increase with noise. As GD is a proximity indicator it shows that MOEA/D+OO converges to solutions in noisy environments much better than MOEA/D. Thus, the GD metric demonstrates that MOEA/D+OO outperforms MOEA/D for noisy MOP.

4.3.3.2 MS

MS (Maximum Spread) is a diversity indicator. When it converges to one it means that the true Pareto front has been properly covered by the approximated Pareto front. Tables 4.1 to 4.6 in Section 4.3.2 include calculated values for the MS metric for MOEA/D+OO. Given that the MS values derived by the new algorithm are almost equal to one, it is clear that the approximated Pareto front covers the true Pareto front very well.

By contrast, the values reported in parentheses that show the difference between two algorithms prove that the MOEA/D cannot maintain diversity of solution in a noisy environment. Thus, according to the MS indicator, the modified algorithm is superior to its basic version in the presence of noise.

4.3.3.3 S

The spacing metric indicates the distribution of solutions along the Pareto front. This metric must return a small value close to zero (ideally zero) for a fine and evenly distributed Pareto front. By studying the value of the S metrics in Tables 4.1 to 4.6, the success of MOEA/D+OO at obtaining evenly distributed solutions along the Pareto front can clearly be seen. According to this indicator, MOEA/D+OO can maintain a better distribution of solutions than basic MOEA/D.
4.3.3.4 HVR

As described in Section 3.4, this indicator of general quality measures the diversity and proximity of the approximated Pareto front. It returns one for the ideal estimated solution. By tracking the HVR values in Tables 4.1 to 4.6, it is evident that MOEA/D+OO is significantly better than MOEA/D at approximating the near optimal in noisy environments. For MOEA/D, HVR values increase on all benchmark problems when noise intensifies (as shown by the values in parentheses).

4.3.3.5 Shape of Pareto front

Apart from performance metrics, the shape of the Pareto front itself can reveal some testament to the performance of an algorithm. For this reason, Figures 4.7 to 4.12 represent the relevant Pareto fronts estimated by MOEA/D+OO in the noisy problems. These Pareto fronts for example showing some missing points from estimated Pareto front in comparison with true Pareto front which in fact reveals diversity of solutions influenced by noise and shows how sever it can be. For example figure 4.9 and 3.4 shows that MOEA/D+OO maintain better diversity than MOEA/D for same problem in presence of different noise levels. Using these figures and with the help of true Pareto front, we offer visual evidence to support the conclusions drawn from the analysis of performance metrics.

4.3.4 Analytical Comparison

For this part we draw box plots relating to performance metrics of MOEA/D+OO and MOEA/D in presence of different levels noise for each benchmark problem that is discussed in section 3.5.2. The deviance of MOEA/D+OO’s superiority over MOEA/D subject to different benchmark problems can be established as following:

4.3.4.1 FON

Two algorithms are compared subject to the result of different performance metrics for noisy benchmark problem FON by box plots in figures 4.13(a)-(d) to 4.17(a)-(d) for 1%
noise to 20% noise. It can be observed from figure 4.13 that MOEA/D+OO outperform MOEA/D with respect to all of the performance metrics. It is because the box plot related to MOEA/D+OO has the median of the data set closer to sensible value for each performance metric, for instance the sensible value for GD and S is 0 while MS and HVR is desirable to converge to 1. Similarly, figures 4.14 to 4.17 are testifying MOEA/D+OO’s superiority over its basic version.

4.3.4.2 KUR

Two algorithms are compared subject to the result of different performance metrics for noisy benchmark problem KUR by box plots in figure 4.18(a)-(d) to 4.22(a)-(d) for 1% noise to 20% noise. In figures 4.18, 4.19 and 4.20 only S metric shows that MOE/D is better than MOEA/D+OO or else according to other metrics MOEA/D+OO outperform over its basic version in presence of all different levels of noise.

4.3.4.3 ZDT1

Two algorithms are compared subject to the result of different performance metrics for noisy benchmark problem ZDT1 by box plots in figure 4.23(a)-(d) to 4.27(a)-(d) for 1% noise to 20% noise. As can be seen from box plots related to this problem MOEA/D+OO outperform over its basic version according to all performance metrics in presence of different noise levels. It is because the median of each data set obtained by MOEA/D+OO are closer to desirable value of each metrics.

4.3.4.4 ZDT3

Two algorithms are compared subject to the result of different performance metrics for noisy benchmark problem ZDT3 by box plots in figure 4.28(a)-(d) to 4.32(a)-(d) for 1% noise to 20% noise. Similar to previous problem ZDT1, the proposed algorithm in this thesis (MOEA/D+OO) can handle noise better that MOEA/D with respect to all metrics and in presence of different levels of noise for noisy benchmark problem ZDT3 as well.
4.3.4.5 ZDT4

Two algorithms are compared subject to the result of different performance metrics for noisy benchmark problem ZDT4 by box plots in figure 4.33(a)-(d) to 4.37(a)-(d) for 1% noise to 20% noise. In part (d) of figure 4.33 MOEA/D has a closer median to 1 for ZDT4 in presence of 1% noise, but MOEA/D+OO obtains shorter range for HVR which is more sensible. For all other scenarios the result shows MOEA/D+OO outperform over MOEA/D with no doubt.

4.3.4.6 ZDT6

Two algorithms are compared subject to the result of different performance metrics for noisy benchmark problem ZDT6 by box plots in figure 4.38(a)-(d) to 4.42(a)-(d) for 1% noise to 20% noise. From these figures, it can be seen that MOEA/D in presence of low level noise such as 1% or 2% does not perform worse than MOEA/D+OO. Because in art (a) and (c) of figure 4.38 and part (c) in figure 4.39 the estimated value of both algorithm can have same quality. But in other instances MOEA/D+OO outperform its basic version.

4.4 Conclusions

This chapter introduced a new algorithm called ‘MOEA/D+OO’. It is a modified version of MOEA/D which is significantly better suited to handling noise. Ordinal optimization (OO) is a technique that softens the goal by compromising on a set of good enough solutions rather than a best solution. According to this technique the order of solutions is more robust than their value in noisy environments [3,74].

The major contribution of this chapter is the proof that MOEA/D+OO significantly outperforms MOEA/D in the noisy multi-objective optimization problem detailed in Section 3.5.2 according to the following performance measures,

- GD for proximity of solutions. See Section 4.3.3.1 and 4.3.4.
- MS for diversity of solutions. See Section 4.3.3.2 and 4.3.4.
• S for distribution of solutions. See Section 4.3.3.3 and 4.3.4.

• HVR a general quality metric for diversity and proximity of solutions. See Section 4.3.3.4 and 4.3.4.

• Estimated Pareto front discussed in Sections 4.3.3.5 and 4.3.2.
Noisy Portfolio Optimization Problem

Economic noise, or simply noise, describes a theory of pricing developed by Fischer Black [120]. Black describes noise as the opposite of information. His theory states that noise is everywhere in the economy and we can rarely tell the difference between it and information [120].

This chapter studies the impact of noise on the noisy portfolio optimization problem. This is a classic problem in finance and economics where the goal is to maximize returns on investment whilst minimizing risk and thereby increasing wealth. Thus, in this Chapter, we are going to solve the problem using both our modified MOEA/D+OO and basic MOEA/D, followed by a comparison of the performance results for both algorithms.
5.1 Introduction

Portfolio management is an important research topic in the finance world. A portfolio includes a number of assets, the returns of which vary in the market according to the patterns of various stochastic processes.

The objective is to maximize the total wealth of the portfolio by finding an optimal allocation of capital to a set of assets. Accordingly, an optimal asset weight must be selected.

The following factors are the key complicators in the portfolio optimization problem.

- Asset interrelationship.
- Decision maker’s preferences.
- Resource allocation.
- Total budget limitation.

There exist several other factors, over and above these elements, that are also involved in making the portfolio optimization problem a complicated one.

Markowitz was awarded an economic sciences Nobel prize in 1990 for his modelling of the portfolio optimization problem. He proposed a fundamental answer to this problem based on the mean-variance model. Markowitz formulated this as an optimization problem with two criteria: maximize the reward (measured by the mean) and minimize the risk of portfolio (measured by the variance of return). The trade-off between risk and return leads to a set of optimal portfolios that is called an efficient portfolio. After Markowitz until now enormous amount of research studies have been published for extending or modifying the basic model in three major aspects [121,122] as following

1. Simplification of the type and amount of input data. When the number of portfolio for selection is large, estimating the covariance will get computationally impractical. [122–124]
2. Alternative measure of risk. Value-at-risk (VaR) become a popular risk measure since it was recommended. Unlike most widely used risk measures, which are based on historical returns, VaR is a forward-looking measure of risk for estimating future portfolio losses. After financial crises which cause significant loss to many investor, Conditional value at Risk (CVaR) implemented which has a higher confidence level [125,126].

3. Additional criteria and/or constraint. Portfolio optimization problem also modelled as a tree objectives optimization problem [122,127] with liquidity or number of securities in the portfolio along with risk and return.

In our research we use a two objective portfolio optimization base on Markowitz mean-variance model.

5.2 Problem Definition

A mean-variance, two objectives portfolio optimization with Q asset problem could be formulated as follows:

$$\begin{align*}
\max & \quad R(x) = \sum_{i=1}^{Q} x_i r_i \\
\min & \quad V(x) = \sum_{i=1}^{Q} \sum_{j=1}^{Q} x_i x_j \sigma_{ij} \\
\text{s.t.} & \quad x \geq 0 \in X \\
& \quad \sum_{i=1}^{Q} x_i = 1
\end{align*}$$

(5.1)

where r_i is the expected return for asset i and σ_{ij} is the covariance between asset i and j. Finally x_i is the decision variable with a value of $[0, 1]$ for $i = 1, 2, \cdots Q$, denoting the composition of asset i in the portfolio as a proportion of the total available capital. Non negativity constraint $x \geq 0$ indicates that no short sales are allowed [128].
As we have established, the portfolio optimization problem is multi-objective with its two objectives being minimised risk and maximized return. The trade-off between these represents a Pareto front, which is the set of all non-dominated solutions in the optimal portfolio.

Despite the existence of many traditional methods for solving multi-objective optimization problems, during the last two decades a number of evolutionary algorithms have been proposed that work with a population of candidate solutions that lead to a Pareto optimal solution after a specific number of generations in a single run.

Amongst all of these multi-objective optimization evolutionary algorithms (MOEA), the decomposition based MOEA (MOEA/D) is emerging as a very promising optimization framework. This decomposes the MOP into a number of scalar subproblems, the optimal solutions of which are Pareto optimal to the MOP.

In this chapter we will use noisy portfolio optimization problem base on Markowitz mean-variance model as an application to test MOEA/D and MOEA/D+OO. MOEA/D was proposed in [11] and MOEA/D+OO introduced in chapter 4 of this thesis. This algorithm combine ordinal optimization technique with MOEA/D to handle noise.

5.3 Uncertainty in Portfolio Optimization Problem

Equation 5.1 outlines a mean-variance portfolio optimization problem. Based on this problem, we will define the noisy portfolio optimization as follows.

5.3.1 Definition of Uncertainty

The terms ‘Risk’ and ‘Noise’ that represent uncertainty in this real-life problem could be considered identical, but this would be a mistake. Whilst it is a fact that noise in our system can lead to a high level of risk for investors, this does not mean that risk and noise are the same. For this reason we study the impact of noise in the portfolio optimization problem. For clarity, we emphasise below the definitions of noise and risk.

Risk is the chance that actual return on investment will be different from the expected return. Risk includes the possibility of losing some or all of the original in-
投资。不同的风险版本通常通过计算特定投资的历史回报或平均回报的标准差来衡量。高标准差表示高风险。

噪声是信息的对立面，由于世界市场的复杂性，不是所有市场数据都是‘信息’。此外，我们日常看到的价格波动很大程度上是由于随机变化而不是有意义的趋势。因此，投资组合优化本质上是噪声的。噪声也可以由政治变化、市场政策变化、自然灾害或战争等...

在这个研究中，我们向投资组合优化问题在等式5.1中添加具有不同标准方差的零均值正态分布噪声。不同的标准方差用于不同的噪声水平。

\[\bar{R}(x) = R(x) + \delta \]
\[\delta \sim N(0, \sigma^2) \] (5.2)

等式5.2描述了市场中的噪声。在这个模型中，我们只向目标空间中加入噪声。就此而言，我们首次尝试对噪声进行投资组合优化。在这个论文中，我们关注噪声在回报中的应用。向风险中加入噪声将留给未来研究。

本研究展示了如何在我们的金融市场系统中处理噪声，以减少噪声对决策进程的影响。为此，我们采用次序优化技术来处理不确定性。次序优化的回顾在第2.5节中提供。

5.4 Experiment

本实验的目的是评估算法MOEA/D+OO和MOEA/D在处理噪声条件下投资组合优化问题的性能。我们将MOEA/D+OO和原来的MOEA/D进行比较，以查看修改是否提高了其处理噪声的能力。
Table 5.1: Result of portfolio optimization returns with 30 assets by MOEA/D

<table>
<thead>
<tr>
<th>Noises</th>
<th>Min</th>
<th>Max</th>
<th>Range</th>
<th>St.D.</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Noise</td>
<td>0.00952</td>
<td>0.02153</td>
<td>0.01200</td>
<td>0.00848</td>
<td>0.01553</td>
</tr>
<tr>
<td>1% Noise</td>
<td>0.00773</td>
<td>0.02905</td>
<td>0.02132</td>
<td>0.01507</td>
<td>0.01839</td>
</tr>
<tr>
<td>2% Noise</td>
<td>0.01120</td>
<td>0.05778</td>
<td>0.04658</td>
<td>0.03293</td>
<td>0.03449</td>
</tr>
<tr>
<td>5% Noise</td>
<td>0.02315</td>
<td>0.12758</td>
<td>0.10443</td>
<td>0.07384</td>
<td>0.07536</td>
</tr>
<tr>
<td>10% Noise</td>
<td>0.11287</td>
<td>0.32321</td>
<td>0.21034</td>
<td>0.14873</td>
<td>0.21804</td>
</tr>
<tr>
<td>20% Noise</td>
<td>0.31974</td>
<td>0.56067</td>
<td>0.24094</td>
<td>0.17037</td>
<td>0.44020</td>
</tr>
</tbody>
</table>

Table 5.2: Result of portfolio optimization returns with 60 assets by MOEA/D

<table>
<thead>
<tr>
<th>Noises</th>
<th>Min</th>
<th>Max</th>
<th>Range</th>
<th>St.D.</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Noise</td>
<td>0.01330</td>
<td>0.03684</td>
<td>0.02354</td>
<td>0.01664</td>
<td>0.02507</td>
</tr>
<tr>
<td>1% Noise</td>
<td>0.00816</td>
<td>0.02784</td>
<td>0.01967</td>
<td>0.01391</td>
<td>0.01800</td>
</tr>
<tr>
<td>2% Noise</td>
<td>0.01703</td>
<td>0.06242</td>
<td>0.04539</td>
<td>0.03209</td>
<td>0.03972</td>
</tr>
<tr>
<td>5% Noise</td>
<td>0.03539</td>
<td>0.13542</td>
<td>0.10003</td>
<td>0.07073</td>
<td>0.08540</td>
</tr>
<tr>
<td>10% Noise</td>
<td>0.09729</td>
<td>0.29031</td>
<td>0.19301</td>
<td>0.13648</td>
<td>0.19380</td>
</tr>
<tr>
<td>20% Noise</td>
<td>0.35623</td>
<td>0.58276</td>
<td>0.22654</td>
<td>0.16019</td>
<td>0.46950</td>
</tr>
</tbody>
</table>

The data used in this thesis are the daily returns of 64 different industries for more than five years. These data are collected from yahoo finance.

5.4.1 How to evaluate results?

To begin with it is necessary to clarify the meaning of some terms such as ‘better performance’ and ‘good solutions’ whilst the true Pareto front is still unknown to us.

We consider algorithm A better than algorithm B if, in the presence of noise, A generates solutions closer to noiseless solutions than B. This is shown in Figure 5.5. The solutions obtained by the superior algorithm are considered good solutions.

By noiseless solutions, we mean solutions generated in the absence of noise. We use the noiseless solutions produced by MOEA/D as our basis of comparison.

5.4.2 Discussion

This experiment challenged the algorithms to find optimal portfolios to problems of 30 and 60 assets in turn. They were faced with low noise levels (1% and 2%), medium noise (5%) and high noise levels (10%, 20%). We compared the performance of both algorithms to see whether the modifications to MOEA/D made the modified algorithm
Figure 5.1: MOEA/D results for portfolio optimization problem with 60 assets (a) without noise, (b) 1%, (c) 2%, (d) 5%, (e) 10%, (f) 20%.
Figure 5.2: MOEA/D results for portfolio optimization problem with 60 assets (a) without noise, (b) 1%, (c) 2%, (d) 5%, (e) 10%, (f) 20%.
Chapter 5. Noisy Portfolio Optimization Problem

Figure 5.3: MOEA/D+OO results for portfolio optimization problem with 30 assets (a) without noise, (b) 1%, (c) 2%, (d) 5%, (e) 10%, (f) 20%.
Figure 5.4: MOEA/D+OO results for portfolio optimization problem with 30 assets (a) without noise, (b) 1%, (c) 2%, (d) 5%, (e) 10%, (f) 20%.
Chapter 5. Noisy Portfolio Optimization Problem

Figure 5.5: Algorithm A is better than B

Table 5.3: Result of portfolio optimization returns with 30 assets by MOEA/D+OO

<table>
<thead>
<tr>
<th>No Noise</th>
<th>1% Noise</th>
<th>2% Noise</th>
<th>5% Noise</th>
<th>10% Noise</th>
<th>20% Noise</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00952</td>
<td>0.00243</td>
<td>0.00141</td>
<td>0.00156</td>
<td>0.00219</td>
<td>0.00940</td>
</tr>
<tr>
<td>0.02153</td>
<td>0.01365</td>
<td>0.02565</td>
<td>0.05987</td>
<td>0.11584</td>
<td>0.21456</td>
</tr>
<tr>
<td>0.01200</td>
<td>0.01121</td>
<td>0.02424</td>
<td>0.05831</td>
<td>0.11364</td>
<td>0.20516</td>
</tr>
<tr>
<td>0.008480</td>
<td>0.002013</td>
<td>0.004022</td>
<td>0.015169</td>
<td>0.029165</td>
<td>0.050858</td>
</tr>
<tr>
<td>0.01553</td>
<td>0.01034</td>
<td>0.01940</td>
<td>0.03520</td>
<td>0.06544</td>
<td>0.13313</td>
</tr>
</tbody>
</table>

Table 5.4: Result of portfolio optimization returns with 60 assets by MOEA/D+OO

<table>
<thead>
<tr>
<th>No Noise</th>
<th>1% Noise</th>
<th>2% Noise</th>
<th>5% Noise</th>
<th>10% Noise</th>
<th>20% Noise</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01330</td>
<td>0.00417</td>
<td>0.00440</td>
<td>0.00225</td>
<td>0.00157</td>
<td>0.00940</td>
</tr>
<tr>
<td>0.03684</td>
<td>0.01428</td>
<td>0.02553</td>
<td>0.05075</td>
<td>0.12257</td>
<td>0.21456</td>
</tr>
<tr>
<td>0.02354</td>
<td>0.01121</td>
<td>0.02424</td>
<td>0.05831</td>
<td>0.11364</td>
<td>0.20516</td>
</tr>
<tr>
<td>0.01664</td>
<td>0.00182</td>
<td>0.00461</td>
<td>0.015169</td>
<td>0.029165</td>
<td>0.050858</td>
</tr>
<tr>
<td>0.02507</td>
<td>0.01034</td>
<td>0.01837</td>
<td>0.03520</td>
<td>0.06544</td>
<td>0.13313</td>
</tr>
</tbody>
</table>
Figure 5.6: MOEA/D+OO vs. MOEA/D with respect to mean, standard deviation and range of return for noisy portfolio optimization problem
better at handling noise.

As can be seen from Figure 5.1, without noise, the MOEA/D found solutions with returns from 0.1% to 1% for the portfolio problem with 30 assets but this range cannot be maintained when noise intensifies. Thus, the solutions found by MOEA/D in the presence of 20% noise are between 0% to 80%, which could easily mislead investors. On the other hand, the MOEA/D+OO found solutions with returns from 1% to 14% for the same problem in the presence of 20% noise, as shown in figure 5.3. This represents a real solutions range. MOEA/D+OO maintains this tendency more or less over the other noise levels, making it better than MOEA/D.

By tracking the results in Figures 5.2 and 5.4 for the portfolio optimization problem with 60 assets, we can see that MOEA/D+OO still maintains its superiority over MOEA/D.

The modified algorithm (MOEA/D+OO) might not be the best algorithm for solving noisy portfolio optimization problem, but it is the first attempt for handling noise in the portfolio optimization problem. For handling noise in portfolio optimization problem not only algorithm need to be developed for handling noise but also modelling technique need to be improved for noisy portfolio problem.

5.4.2.1 Analytical Comparison

We collect statistics only from return objective function of portfolio optimization problem. It is because in our study noise is only added to return in objective space. In tables 5.1 and 5.2 minimum, maximum, range of estimated solution, standard divination and mean of solutions which have been found by MOEA/D is reported for portfolio with 30 and 60 assets respectively. Similarly we provide the same information for MOEA/D+OO in tables 5.3 and 5.4.

It can be seen from tables 5.1 to 5.4 that the value of each column increase from top to bottom. It mean the performance of algorithm deteriorate when noise intensities increased. In fact both algorithm show the same increasing trend but MOEA/D+OO obtain smaller value than MOEA/D. To be more clear, values are plotted in figure 5.6.
to compare both algorithm in more sensible way.

MOEA/D+OO is compared with its basic version in figure 5.6 with respect to mean in part (a) and (b) for 30 and 60 assets portfolio respectively, or standard divination in part (c) and (d) for 30 and 60 assets portfolio respectively and finally range of solutions in part (e) and (f) for 30 and 60 assets portfolio respectively against 0%, 1%, 2%, 5%, 10% and 20% noise. As can be clearly seen MOEA/D+OO out perform MOEA/D by estimating solutions closer to noiseless solution (0%) with respect to mean, standard divination and range of solutions.

5.5 Conclusions

The portfolio optimization problem makes use of historical stock market data to assist investors in planning future investments. Based on how much risk an investor is willing to take, for a certain return a proportional investing strategy can be accomplished. Naturally, there is no guarantee on results as this optimization problem produces answers by looking at the market’s past behaviour. In other words, the predicted returns found through portfolio optimization are noisy by nature. As a result of this noise, and general noise in the market, making a profit depends entirely on the robustness of the portfolio in a noisy environment.

As can been seen by the results of this study, portfolio optimization is very sensitive to noise - even gentle turbulence has an impact. This fact could render investors very vulnerable to sudden changes in the market, making a noise handling strategy extremely important. Their success or failure could depend on the strategy chosen.

In this thesis we have solved the noisy portfolio optimization problem with our noise-robust algorithm (MOEA/D+OO). We compared MOEA/D+OO with MOEA/D to demonstrate the significance of our modification. Thus, the major contributions of this chapter are listed below:

1. Noisy portfolio optimization has never been done before.

2. Portfolio optimization is very sensitive to noise.
3. MOEA/D+OO is better than MOEA/D at handling noise in the portfolio optimization problem. See Section 5.4.2.
This study set out to investigate the performance of decomposition evolutionary algorithms in noisy multi-objective optimization problems. It is a fact that many real world problems are both multi-objective and noisy. Noise can be produced from a range of different sources, as discussed in Section 1.1. As a result, it is necessary to educate ourselves on this natural phenomenon and to find robust optimization techniques with which to handle noisy problems.

6.1 Summary

Our intended aim for this research was to find a modification for MOEA/D that allowed it to handle noisy problems. This work, therefore, contributes towards understanding
the impact of noise on MOEA/D. As described in Section 3.1, we modelled the noise that disrupts the objective function on a Gaussian distribution. This is the most common way to introduce noise, although there are some studies that do consider other distributions [35].

Following the modelling of the noisy problems, we studied the basic MOEA/D for a deeper understanding of the impact of noise on its performance. In the presence of noise, the performance of MOEA/D can deteriorate rapidly, as seen in Section ?? The detrimental effects of noise on selection, elitism and diversity preservation, present a significant challenge to the algorithm in its efforts to achieve a good estimation of the Pareto front. For this reason, benchmark problems with different characteristics, as described in Table 3.1, and different performance metrics, as outlined in Section 3.4, were comprehensively applied.

MOEA/D was modified for handling noisy problems through combination with an optimization technique known as Ordinal Optimization [3]. Due to the fact that the order of solutions is more robust than their values (see Section 2.5) this technique proves itself to be highly effective at handling noise. Its performance is discussed in Section 4.3.3. The new algorithm is called MOEA/D+OO.

For the first time, we investigate the noisy portfolio optimization problem on real world problems and solve it using both algorithms. In spite of being noisy in nature, this problem shows high sensitivity to the slightest noise in our experiments, the results of which can be seen in Section 5.4.2.

6.2 Contributions

The main empirical finding is that the modified algorithm MOEA/D+OO significantly outperforms the basic MOEA/D.

The major contributions of this work can be summarized as follows:

- MOEA/D was studied in the presence of different noise levels to gain a deeper understanding of the impact of noise deterioration.
• We introduced a new algorithm called ‘MOEA/D+OO’ to handle noisy problems. It significantly outperformed basic MOEA/D on our diverse selection of benchmark problems.

• We employed the proposed algorithm to solve the noisy portfolio optimization problem with different numbers of assets. This is a classic finance optimization problem in which the goal is to find an optimal policy to use on all types of available assets in the market to make the total return maximal by taking a minimum risk. The efficient portfolios estimated by ‘MOEA/D+OO’ are closer to noiseless than those found by MOEA/D.
6.3 Future Work

Several interesting issues remain to be addressed and the most interesting topics for further study are listed below.

- Using a surrogate model, constructed as a crude model, to evaluate the objective function. There are various methods to introduce a surrogate model, including Support Vector Regression (SVR), Artificial Neural Network (ANN) and many more [78].

- Using a budget allocation technique to reduce the total simulation cost. In this method, critical designs receive a larger portion of the computing budget to reduce the estimator variance. Ordinal optimization can significantly reduce the computational cost therefore using an intelligent budget controlling process could be a future improvement [129].

6.4 Conclusion

Despite the many ground breaking studies that have been undertaken into optimization in noisy environments in recent decades, there still exist many areas for continued development. This thesis is just the beginning of a long journey and this area demands greater attention in future studies.
References

The approximated Pareto front as proposed by the System Optimization group1 in Zurich is considered as the true Pareto front for each of the test problems used in this thesis. The head of this group is Professor Eckart Zitzler who, in conjunction with Professor K. Deb and Professor L. Thiele \cite{114}, devised the ZDT problems. This information along with more complementary information is available online2.

1http://www.tik.ee.ethz.ch/sop/
2http://www.tik.ee.ethz.ch/sop/download-supplementary-testproblems/
Chapter A. True Pareto fronts

Figure A.1: True Pareto front of ZDT1.

Figure A.2: True Pareto front of ZDT3.
Figure A.3: True Pareto front of ZDT4.

Figure A.4: True Pareto front of ZDT6.
Ordinal Optimization Demonstration

The following demonstration has been designed by Yu-Chi Ho from the University of Harvard\(^1\) who proposed the ordinal optimization technique.

This demonstration is designed in Microsoft Excel.

- 1. Open a new work sheet.
- 2. Enter the value of “1” in cell A1.
- 3. Enter the formula “=A1+1” in cell A2.

This will yield for column A1 through A200 the values 1, 2, ..., 200 which represents an Ordered Performance Curve (OPC) of a complex system. Note the OPC must be

\(^{1}\text{http://people.seas.harvard.edu/~ho/DEDS/OO/Demo/Simple.html}\)
monotonic and one dimensional regardless of the complexity of the system. The best performance is “1”, the second best “2”, ..., and so on. You can change the values in the cell later on if you want.

- 6. Enter the formula “=rand()*100” into cell B1.

This enters a column of random numbers uniformly distributed between 0 and 100. In column B, note the range of the noise is half as large as the range of the system performance. You can of course change the value defining the range which is “100” currently.

- 8. Enter the formula “=A1+B1” in cell C1.
- 9. Copy cell C1 and paste into C2 through C200.

This operations enters the estimated (or noise corrupted) system performance of the 200 design in column C

- 10. Now copy the three-column region from A1 to C200.
- 11. Define another three column region from D1 to F200.
- 12. Use “paste special” command to “value-paste” the contents (not the formula) of A1 - C200 to D1 - F200.

Because of the design of Excel we cannot just paste A1 - C200 to D1 - F200. You will note that at the end of step 12, the content of D1-F200 is what was in A1-C200 before the execution of the paste special command. The content of A1-C200 is a NEW set of noises and estimated system performance.

- 13. Define the region F1-D200, and choose the sort command from the “data” menu. Now sort the F column in ascending order by rows.
- 14. Now look at column D, and see how many numbers from 1 through n appear in the top n rows. This correspond to one sample realization of the alignment between the actual top-n design with the estimated top-n design.
If you did the above steps correctly, you should see on the average 4 of the true top-12 in the first twelve rows of column D for the given value of the parameters, i.e.,

- \(N \) = total of designs considered and estimated = 200

- \(W \) = range of estimation noise = 100

- \(n \) = range of good enough subset, the top-n designs = 12

Now you are ready to repeat steps 12-14 again for another sample realization.